scholarly journals Impact of Oxygen Supply and Scale Up on Mycobacterium smegmatis Cultivation and Mycofactocin Formation

Author(s):  
Luis Peña-Ortiz ◽  
Ivan Schlembach ◽  
Gerald Lackner ◽  
Lars Regestein

Mycofactocin (MFT) is a recently discovered glycosylated redox cofactor, which has been associated with the detoxification of antibiotics in pathogenic mycobacteria, and, therefore, of potential medical interest. The MFT biosynthetic gene cluster is commonly found in mycobacteria, including Mycobacterium tuberculosis, the causative agent of tuberculosis. Since the MFT molecule is highly interesting for basic research and could even serve as a potential drug target, large-scale production of the molecule is highly desired. However, conventional shake flask cultivations failed to produce enough MFT for further biochemical characterization like kinetic studies and structure elucidation, and a more comprehensive study of cultivation parameters is urgently needed. Being a redox cofactor, it can be hypothesized that the oxygen transfer rate (OTR) is a critical parameter for MFT formation. Using the non-pathogenic strain Mycobacterium smegmatis mc2 155, shake flask experiments with online measurement of the oxygen uptake and the carbon dioxide formation, were conducted under different levels of oxygen supply. Using liquid chromatography and high-resolution mass spectrometry, a 4–8 times increase of MFT production was identified under oxygen-limited conditions, in both complex and mineral medium. Moreover, the level of oxygen supply modulates not only the overall MFT formation but also the length of the glycosidic chain. Finally, all results were scaled up into a 7 L stirred tank reactor to elucidate the kinetics of MFT formation. Ultimately, this study enables the production of high amounts of these redox cofactors, to perform further investigations into the role and importance of MFTs.

Author(s):  
S. Pragati ◽  
S. Kuldeep ◽  
S. Ashok ◽  
M. Satheesh

One of the situations in the treatment of disease is the delivery of efficacious medication of appropriate concentration to the site of action in a controlled and continual manner. Nanoparticle represents an important particulate carrier system, developed accordingly. Nanoparticles are solid colloidal particles ranging in size from 1 to 1000 nm and composed of macromolecular material. Nanoparticles could be polymeric or lipidic (SLNs). Industry estimates suggest that approximately 40% of lipophilic drug candidates fail due to solubility and formulation stability issues, prompting significant research activity in advanced lipophile delivery technologies. Solid lipid nanoparticle technology represents a promising new approach to lipophile drug delivery. Solid lipid nanoparticles (SLNs) are important advancement in this area. The bioacceptable and biodegradable nature of SLNs makes them less toxic as compared to polymeric nanoparticles. Supplemented with small size which prolongs the circulation time in blood, feasible scale up for large scale production and absence of burst effect makes them interesting candidates for study. In this present review this new approach is discussed in terms of their preparation, advantages, characterization and special features.


2020 ◽  
Vol 27 (2) ◽  
pp. 105-110 ◽  
Author(s):  
Niaz Ahmad ◽  
Muhammad Aamer Mehmood ◽  
Sana Malik

: In recent years, microalgae have emerged as an alternative platform for large-scale production of recombinant proteins for different commercial applications. As a production platform, it has several advantages, including rapid growth, easily scale up and ability to grow with or without the external carbon source. Genetic transformation of several species has been established. Of these, Chlamydomonas reinhardtii has become significantly attractive for its potential to express foreign proteins inexpensively. All its three genomes – nuclear, mitochondrial and chloroplastic – have been sequenced. As a result, a wealth of information about its genetic machinery, protein expression mechanism (transcription, translation and post-translational modifications) is available. Over the years, various molecular tools have been developed for the manipulation of all these genomes. Various studies show that the transformation of the chloroplast genome has several advantages over nuclear transformation from the biopharming point of view. According to a recent survey, over 100 recombinant proteins have been expressed in algal chloroplasts. However, the expression levels achieved in the algal chloroplast genome are generally lower compared to the chloroplasts of higher plants. Work is therefore needed to make the algal chloroplast transformation commercially competitive. In this review, we discuss some examples from the algal research, which could play their role in making algal chloroplast commercially successful.


2015 ◽  
Vol 12 (107) ◽  
pp. 20150240 ◽  
Author(s):  
J. M. Byrne ◽  
H. Muhamadali ◽  
V. S. Coker ◽  
J. Cooper ◽  
J. R. Lloyd

Although there are numerous examples of large-scale commercial microbial synthesis routes for organic bioproducts, few studies have addressed the obvious potential for microbial systems to produce inorganic functional biomaterials at scale. Here we address this by focusing on the production of nanoscale biomagnetite particles by the Fe(III)-reducing bacterium Geobacter sulfurreducens , which was scaled up successfully from laboratory- to pilot plant-scale production, while maintaining the surface reactivity and magnetic properties which make this material well suited to commercial exploitation. At the largest scale tested, the bacterium was grown in a 50 l bioreactor, harvested and then inoculated into a buffer solution containing Fe(III)-oxyhydroxide and an electron donor and mediator, which promoted the formation of magnetite in under 24 h. This procedure was capable of producing up to 120 g of biomagnetite. The particle size distribution was maintained between 10 and 15 nm during scale-up of this second step from 10 ml to 10 l, with conserved magnetic properties and surface reactivity; the latter demonstrated by the reduction of Cr(VI). The process presented provides an environmentally benign route to magnetite production and serves as an alternative to harsher synthetic techniques, with the clear potential to be used to produce kilogram to tonne quantities.


2011 ◽  
Vol 1323 ◽  
Author(s):  
A. Abbas ◽  
J.W. Bowers ◽  
B. Maniscalco ◽  
S. Moh ◽  
G.D West ◽  
...  

ABSTRACTA new magnetron sputtering strategy is introduced that utilizes high plasma density (~5mA.cm-2) to avoid or reduce high temperature processing. The technique uses magnetrons of opposing magnetic polarity to create a “closed field” in which the plasma density is enhanced without the need for high applied Voltages. A batch system has been used which employs a rotating vertical drum as the substrate carrier and a symmetrical array of linear magnetrons. The magnetrons are fitted with target materials for each of the thin films required in the photovoltaic (PV) stack including the CdTe absorber layer, CdS window layer, metal contact using the conventional superstrate configuration. The “closed field” sputtering technology allows scale up not only for larger batch system designs but it is also configurable for “in-line” or “roll to roll” formats for large scale production. The morphology of each of the layers is characterized using a variety of structural and optical techniques including Field Emission Gun SEM and X-ray diffraction (XRD).


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Thomas Moreau ◽  
Amanda L. Evans ◽  
Louella Vasquez ◽  
Marloes R. Tijssen ◽  
Ying Yan ◽  
...  

Abstract The production of megakaryocytes (MKs)—the precursors of blood platelets—from human pluripotent stem cells (hPSCs) offers exciting clinical opportunities for transfusion medicine. Here we describe an original approach for the large-scale generation of MKs in chemically defined conditions using a forward programming strategy relying on the concurrent exogenous expression of three transcription factors: GATA1, FLI1 and TAL1. The forward programmed MKs proliferate and differentiate in culture for several months with MK purity over 90% reaching up to 2 × 105 mature MKs per input hPSC. Functional platelets are generated throughout the culture allowing the prospective collection of several transfusion units from as few as 1 million starting hPSCs. The high cell purity and yield achieved by MK forward programming, combined with efficient cryopreservation and good manufacturing practice (GMP)-compatible culture, make this approach eminently suitable to both in vitro production of platelets for transfusion and basic research in MK and platelet biology.


Author(s):  
Sri Lakshmi Puliga ◽  
Suhas Handa ◽  
Sathyanarayana N Gummadi ◽  
Mukesh Doble

Curdlan is a water insoluble polysaccharide composed exclusively of ?-(1, 3) linked glucose residues. Agrobacterium sp. is known to produce extracellular curdlan under nitrogen-limited conditions. The purpose of this study was to investigate the effects of pH, amounts of ammonium, sucrose and trace elements, and time the addition of sucrose, ammonium and uracil on the production of curdlan in a shake flask and to further scale-up the process to a 5 L fermentor. A maximum of 48.7 g L-1 of curdlan was obtained in a shake flask when 150 and 1.4 g L-1 of sucrose and ammonium were used at the initial pH of 6.5. The production was enhanced to 57 g L-1 by adding one third of sucrose and 1 g L-1 of uracil at the 48th h in a fed batch mode. The process was scaled up to a 5 L bioreactor in a batch mode where the oxygen transfer rate was higher (0.192 mg L-1s-1) when compared to that in the shake flask (0.096 mg L-1s-1). Curdlan production was 58 g L-1 in the bioreactor, which was higher than the shake flask under batch conditions (48.7 g L-1). The viscosity average molecular weight of the curdlan produced was found to be 1.4 × 105.


2017 ◽  
Vol 742 ◽  
pp. 17-24
Author(s):  
Steve Sockol ◽  
Christoph Doerffel ◽  
Juliane Mehnert ◽  
Gerd Zwinzscher ◽  
Steffen Rein ◽  
...  

Fiber-reinforced thermoplastics have a high potential for big scale light weight process applications due to low processing times and recyclability. Further advantages are the low emissions during the manufacturing process and beneficial handling and storing properties of the semi finished materials. Thermoplastic composites are made of reinforcement fibers and a thermoplastic polymer matrix by applying two essential sub processes: (1) melting of the matrix-material and (2) impregnating the textile component with molten matrix-material. At present state of art both sub-processes are applied by using double-belt-presses, characterized by high processing temperatures and high processing forces. Therefore, a large amount of energy is needed to create the necessarily high compaction forces and temperatures with hydraulic cylinders and electric heating. Convection, infrared-radiation and the cooling (dynamic) of tempered machine parts leads to a significant dissipation of energy. Especially the process for generating the hydraulic pressure has a low level of efficiency. Therefore, in respect to economic and ecologic reasons, novel energy-efficient impregnation processes need to be investigated and developed. The represented novel impregnation process is based on ultrasonic technology. A stack of polymer film (outer layers) and a textile ply (inner layer) is formed and the energy is applied with an ultrasonic sonotrode. The efficient, fast and strongly concentrated energy application into the thermoplastic films allows the development of novel and highly flexible machine concepts. These can be used for development of small scale up to large scale production processes. The ultrasonic-technology allows a continuous impregnation of the textile component with molten matrix-material. A custom-designed prototype was developed. First material samples were produced and the technological parameters studied. A characterization of the experimental results, material samples, prototype machine and process is the focus of this paper.


2021 ◽  
Vol 3 ◽  
Author(s):  
David Izikowitz

Natural and engineered carbon dioxide removal have become regular features of climate models which limit warming to 1.5°C or even 2°C above pre-industrial levels. This gives rise to an assumption that solutions, for example direct air capture (DAC)—involving the direct removal of carbon dioxide from ambient air—can be commercialised and deployed at the necessary speed and scale to have a material impact, in the order of gigatonnes, by mid-century. Modular, solid-sorbent DAC on a gigatonne scale will require the mass mobilisation of supply chains to manufacture millions of modular DAC units−20 million of the present state of the art 50 tonne/year modules to deliver 1 gigatonne per year, as well as the large-scale production of novel chemical sorbents. To achieve a climate relevant DAC industry will demand innovative procurement models, for example carbon purchase agreements (CPAs), and dedicated DAC manufacturing facilities or dactories. In addition, insight is offered through the work of DAC start-up Carbon Infinity into the industry supply-chain position, adopting lessons from computing, and energy technologies. In particular, we look at approaches to drive demand and scale-up DAC module production, and opportunities presented in the development of an integrated DAC manufacturing industry.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Sy Le Thanh Nguyen ◽  
Dinh Thi Quyen ◽  
Hong Diep Vu

The streptokinase (SK) is emerging as an important thrombolytic therapy agent in the treatment of patients suffering from cardiovascular diseases. We reported highly effective renaturation of a SK fromS. pyogenessDT7 overexpressed inE. coli, purification, and biochemical characterization. A gene coding for the SK was cloned fromS. pyogenessDT7. Because accumulation of active SK is toxic to the host cells, we have expressed it in the form of inclusion bodies. The mature protein was overexpressed inE. coliBL21 DE3/pESK under the control of the strong promotertacinduced by IPTG with a level of 60% of the total cell proteins. The activity of the rSK, renatured in phosphate buffer supplemented with Triton X-100 and glycerol, was covered with up to 41 folds of its initial activity. The purified of protein was identified with MALDI-TOF mass spectrometry through four peptide fragments, which showed 100% identification to the corresponding peptides of the putative SK from GenBank. Due to overexpression and highly effective renaturation of large amounts of inclusion bodies, the recombinantE. coliBL21 DE3/pESK system could be potentially applied for large-scale production of SK used in the therapy of acute myocardial infarction.


Sign in / Sign up

Export Citation Format

Share Document