scholarly journals Neuromesodermal Progenitors: A Basis for Robust Axial Patterning in Development and Evolution

Author(s):  
Ramkumar Sambasivan ◽  
Benjamin Steventon

During early development the vertebrate embryo elongates through a combination of tissue shape change, growth and progenitor cell expansion across multiple regions of the body axis. How these events are coordinated across the length of the embryo to generate a well-proportioned body axis is unknown. Understanding the multi-tissue interplay of morphogenesis, growth and cell fate specification is essential for us to gain a complete understanding how diverse body plans have evolved in a robust manner. Within the posterior region of the embryo, a population of bipotent neuromesodermal progenitors generate both spinal cord and paraxial mesoderm derivatives during the elongation of the vertebrate body. Here we summarize recent data comparing neuromesodermal lineage and their underlying gene-regulatory networks between species and through development. We find that the common characteristic underlying this population is a competence to generate posterior neural and paraxial mesoderm cells, with a conserved Wnt/FGF and Sox2/T/Tbx6 regulatory network. We propose the hypothesis that by maintaining a population of multi-germ layer competent progenitors at the posterior aspect of the embryo, a flexible pool of progenitors is maintained whose contribution to the elongating body axis varies as a consequence of the relative growth rates occurring within anterior and posterior regions of the body axis. We discuss how this capacity for variation in the proportions and rates of NM specification might have been important allowing for alterations in the timing of embryo growth during evolution.

1983 ◽  
Vol 100 (3) ◽  
pp. 681-687 ◽  
Author(s):  
A. S. Davies

SUMMARYSelected data of McMeekan (1940, 1941) were reanalysed to compare the proportions and distribution of tissues, and the weights of some organs, in pigs growing at different growth rates due to differing levels of nutrition. The effects of variation in fat content were excluded, and the distribution of tissues was compared at the same total weight for each tissue, by allometric regressions. Except for components of the head and neck, and the stomach, the results do not support a concept of retardation of development by poor nutrition of those parts of the body with the highest relative growth rates.


Science ◽  
2018 ◽  
Vol 362 (6417) ◽  
pp. eaat1045 ◽  
Author(s):  
Lu Yan ◽  
Jing Chen ◽  
Xuechen Zhu ◽  
Jiawei Sun ◽  
Xiaotong Wu ◽  
...  

The vertebrate body is formed by cell movements and shape change during embryogenesis. It remains undetermined which maternal signals govern the formation of the dorsal organizer and the body axis. We found that maternal depletion of huluwa, a previously unnamed gene, causes loss of the dorsal organizer, the head, and the body axis in zebrafish and Xenopus embryos. Huluwa protein is found on the plasma membrane of blastomeres in the future dorsal region in early zebrafish blastulas. Huluwa has strong dorsalizing and secondary axis–inducing activities, which require β-catenin but can function independent of Wnt ligand/receptor signaling. Mechanistically, Huluwa binds to and promotes the tankyrase-mediated degradation of Axin. Therefore, maternal Huluwa is an essential determinant of the dorsal organizer and body axis in vertebrate embryos.


Development ◽  
2020 ◽  
Vol 147 (14) ◽  
pp. dev190629 ◽  
Author(s):  
Marta N. Shahbazi

ABSTRACTGene regulatory networks and tissue morphogenetic events drive the emergence of shape and function: the pillars of embryo development. Although model systems offer a window into the molecular biology of cell fate and tissue shape, mechanistic studies of our own development have so far been technically and ethically challenging. However, recent technical developments provide the tools to describe, manipulate and mimic human embryos in a dish, thus opening a new avenue to exploring human development. Here, I discuss the evidence that supports a role for the crosstalk between cell fate and tissue shape during early human embryogenesis. This is a critical developmental period, when the body plan is laid out and many pregnancies fail. Dissecting the basic mechanisms that coordinate cell fate and tissue shape will generate an integrated understanding of early embryogenesis and new strategies for therapeutic intervention in early pregnancy loss.


1961 ◽  
Vol 1 (2) ◽  
pp. 49-54
Author(s):  
S. U. Khan

It is sometimes said that "national planning will simply have no meaning if it completely ignores the economic disparities between the two wings and fails to evolve a sensible pattern of regional planning"2. The lack of much essential data on a regional basis, however, renders any precise estimate of the relative growth rates almost impossible. Data either are not available or are inadequate on such important variables as production, income, consumption and trade, so that even a correct evaluation of past development efforts is not possible. The implications of such a situation for future planning are not difficult to understand. In this article an attempt is made to estimate the absorption of specified commodities in East and West Pakistan separately3. This will indicate the pattern of consumption and also give a rough idea about the growth rate of the two wings. With this purpose in view, quantity indices of absorption are prepared for each wing separately, taking data on availability of goods and prices from the Institute's monograph on Inflation. The quantity indi¬ces, however, are not of course strictly comparable with national income estimates because of the difference in coverage of the two series. National income data include government, services, trade, etc., while the quantity indices cover only specified goods available for each region.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1091G-1091
Author(s):  
Anne K. Hurley ◽  
B. Greg Cobb

Cucumis sativus, L., `Poinsett' seedlings were grown under artificial light in 40% modified Hoagland's solution until an average plant plastochron index of 4.73 was reached. Plants were then placed in solutions of (1) 0 mM NaCl, (2) 80 mM NaCl (salt-shock), or (3) placed in a dropwise gradient solution of NaCl and Hoagland's until the final concentration of 80 mM NaCl was reached at 41 hours. Leaves of the 80 mM shock treatment wilted immediately, but recovered turgor within 6 hours. Leaves of 80 mM gradient did not wilt at anytime. The control and gradient treatments had relative growth rates which were similar to each other, but RGR decreased in the shock treatment. Invertase activity was measured in the roots at 24, 41, and 48 hours after initial treatment. Invertase activity of shock treatment increased significantly over the controls at 24 hours. The 80mM gradient was not significantly different than either treatment. Four isozymes of α– galactosidase were detected. The relative intensities of the bands varied with time and treatment. One invertase band was resolved in roots on 8% native acrylamide gels. SDS gels indicated increases in proteins in the gradient treatment compared to the control and the 80 mM shock treatment.


1979 ◽  
Vol 69 (1) ◽  
pp. 141-148 ◽  
Author(s):  
A. Mudd ◽  
G. L. Bateman

AbstractGrowth of the food fungus of the leaf-cutting ant Atta cephalotes (L.) on extracts of plants selected by the ants was shown to be affected by the plant species, the pH of the extract, the concentration of the sap or plant extract and pretreatment of the substrate by the ants. It was not possible to establish an unambiguous relationship between the rate of growth of the fungus on leaf extracts and the foraging preferences of the ants for the leaves. There were indications, however, that the fungus grows most rapidly on extracts of plant material preferred by A. cephalotes. Relative growth rates of the fungus on different substrates may be related to the presence of growth inhibitors rather than to nutrient availability.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mika J. Välimäki ◽  
Robert S. Leigh ◽  
Sini M. Kinnunen ◽  
Alexander R. March ◽  
Ana Hernández de Sande ◽  
...  

AbstractBackgroundPharmacological modulation of cell fate decisions and developmental gene regulatory networks holds promise for the treatment of heart failure. Compounds that target tissue-specific transcription factors could overcome non-specific effects of small molecules and lead to the regeneration of heart muscle following myocardial infarction. Due to cellular heterogeneity in the heart, the activation of gene programs representing specific atrial and ventricular cardiomyocyte subtypes would be highly desirable. Chemical compounds that modulate atrial and ventricular cell fate could be used to improve subtype-specific differentiation of endogenous or exogenously delivered progenitor cells in order to promote cardiac regeneration.MethodsTranscription factor GATA4-targeted compounds that have previously shown in vivo efficacy in cardiac injury models were tested for stage-specific activation of atrial and ventricular reporter genes in differentiating pluripotent stem cells using a dual reporter assay. Chemically induced gene expression changes were characterized by qRT-PCR, global run-on sequencing (GRO-seq) and immunoblotting, and the network of cooperative proteins of GATA4 and NKX2-5 were further explored by the examination of the GATA4 and NKX2-5 interactome by BioID. Reporter gene assays were conducted to examine combinatorial effects of GATA-targeted compounds and bromodomain and extraterminal domain (BET) inhibition on chamber-specific gene expression.ResultsGATA4-targeted compounds 3i-1000 and 3i-1103 were identified as differential modulators of atrial and ventricular gene expression. More detailed structure-function analysis revealed a distinct subclass of GATA4/NKX2-5 inhibitory compounds with an acetyl lysine-like domain that contributed to ventricular cells (%Myl2-eGFP+). Additionally, BioID analysis indicated broad interaction between GATA4 and BET family of proteins, such as BRD4. This indicated the involvement of epigenetic modulators in the regulation of GATA-dependent transcription. In this line, reporter gene assays with combinatorial treatment of 3i-1000 and the BET bromodomain inhibitor (+)-JQ1 demonstrated the cooperative role of GATA4 and BRD4 in the modulation of chamber-specific cardiac gene expression.ConclusionsCollectively, these results indicate the potential for therapeutic alteration of cell fate decisions and pathological gene regulatory networks by GATA4-targeted compounds modulating chamber-specific transcriptional programs in multipotent cardiac progenitor cells and cardiomyocytes. The compound scaffolds described within this study could be used to develop regenerative strategies for myocardial regeneration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shotaro Harada ◽  
Takao Imai ◽  
Yasumitsu Takimoto ◽  
Yumi Ohta ◽  
Takashi Sato ◽  
...  

AbstractIn the interaural direction, translational linear acceleration is loaded during lateral translational movement and gravitational acceleration is loaded during lateral tilting movement. These two types of acceleration induce eye movements via two kinds of otolith-ocular reflexes to compensate for movement and maintain clear vision: horizontal eye movement during translational movement, and torsional eye movement (torsion) during tilting movement. Although the two types of acceleration cannot be discriminated, the two otolith-ocular reflexes can distinguish them effectively. In the current study, we tested whether lateral-eyed mice exhibit both of these otolith-ocular reflexes. In addition, we propose a new index for assessing the otolith-ocular reflex in mice. During lateral translational movement, mice did not show appropriate horizontal eye movement, but exhibited unnecessary vertical torsion-like eye movement that compensated for the angle between the body axis and gravito-inertial acceleration (GIA; i.e., the sum of gravity and inertial force due to movement) by interpreting GIA as gravity. Using the new index (amplitude of vertical component of eye movement)/(angle between body axis and GIA), the mouse otolith-ocular reflex can be assessed without determining whether the otolith-ocular reflex is induced during translational movement or during tilting movement.


Sign in / Sign up

Export Citation Format

Share Document