scholarly journals Upregulation of SPP1 Is a Marker for Poor Lung Cancer Prognosis and Contributes to Cancer Progression and Cisplatin Resistance

Author(s):  
Huaping Tang ◽  
Jianyou Chen ◽  
Xiaolei Han ◽  
Yan Feng ◽  
Fang Wang

The chemoresistance of lung cancer is a significant contributor to its high mortality and morbidity rate. There is an urgent need to identify differentially expressed genes in lung cancer patients with a poor prognosis to develop effective means to overcome drug resistance in subsequent treatment. In this study, we identified the secreted phosphoprotein 1 (SPP1) as a potential gene associated with a poor diagnosis of lung cancer patients using the Cancer Genome Atlas analysis, which suggested that the expression of SPP1 in tumor tissues was significantly higher than normal tissues. The high expression of SPP1 was also correlated with tumor grade and poor clinical prognosis. To understand the roles of SPP1 and the DNA methyltransferase 1 (DNMT1), which regulated SPP1 expression, in affecting cell viability, migration and invasion, SPP1 and DNMT1 were overexpressed in the human lung cancer A549 and NCI-446 cells, followed by analyzing cell viability, migration and invasion. We showed that SPP1 promoted the proliferation, migration and invasion of lung cancer cells, and increased the resistance of lung cancer to the chemotherapeutic drug cisplatin. Knocking down SPP1 in cells restored sensitivity to cisplatin. Further, A549 cells without SPP1 overexpression demonstrated lower tumor growth rate than SPP1 overexpression cells using the xenograft tumor mouse model. High expression of SPP1 in lung cancer tumor tissue was caused by the reduced methylation level of its promoter region mediated by DNMT1. Our data suggested that SPP1 can be used as a marker for highly malignant lung cancer and targeting SPP1 may be a potential lung cancer treatment strategy.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Hui Xu ◽  
Wenjing Zhou ◽  
Fan Zhang ◽  
Linhui Wu ◽  
Juan Li ◽  
...  

AbstractPDS5B (precocious dissociation of sisters 5B) plays a pivotal role in carcinogenesis and progression. However, the biological functions of PDS5B in lung cancer and its underlying mechanisms are not fully elucidated. In the present study, we used MTT assays, wound-healing assays, and transwell migration and invasion approach to examine the cell viability, migration, and invasion of non-small cell lung cancer (NSCLC) cells after PDS5B modulation. Moreover, we investigated the function of PDS5B overexpression in vivo. Furthermore, we detected the expression of PDS5B in tissue samples of lung cancer patients by immunohistochemical study. We found that upregulation of PDS5B repressed cell viability, migration, and invasion in NSCLC cells, whereas downregulation of PDS5B had the opposite effects. We also observed that PDS5B overexpression retarded tumor growth in nude mice. Notably, PDS5B positively regulated LATS1 expression in NSCLC cells. Strikingly, low expression of PDS5B was associated with lymph node metastasis in lung cancer patients. Our findings suggest that PDS5B might be a therapeutic target for lung cancer.


Author(s):  
Jie Zeng ◽  
Xuan Li ◽  
Long Liang ◽  
Hongxia Duan ◽  
Shuanshuan Xie ◽  
...  

Abstract Purpose Cyclase-associated protein 1 (CAP1) is a ubiquitous protein which regulates actin dynamics. Previous studies have shown that S308 and S310 are the two major phosphorylated sites in human CAP1. In the present study, we aimed to investigate the role of CAP1 phosphorylation in lung cancer. Methods Massive bioinformatics analysis was applied to determine CAP1’s role in different cancers and especially in lung cancer. Lung cancer patients’ serum and tissue were collected and analyzed in consideration of clinical background. CAP1 shRNA-lentivirus and siRNA were applied to CAP1 gene knockdown, and plasmids were constructed for CAP1 phosphorylation and de-phosphorylation. Microarray analysis was used for CAP1-associated difference analysis. Both in vitro and in vivo experiments were performed to investigate the roles of CAP1 phosphorylation and de-phosphorylation in lung cancer A549 cells. Results CAP1 is a kind of cancer-related protein. Its mRNA was overexpressed in most types of cancer tissues when compared with normal tissues. CAP1 high expression correlated with poor prognosis. Our results showed that serum CAP1 protein concentrations were significantly upregulated in non-small cell lung cancer (NSCLC) patients when compared with the healthy control group, higher serum CAP1 protein concentration correlated with shorter overall survival (OS) in NSCLC patients, and higher pCAP1 and CAP1 protein level were observed in lung cancer patients’ tumor tissue compared with adjacent normal tissue. Knockdown CAP1 in A549 cells can inhibit proliferation and migration, and the effect is validated in H1975 cells. It can also lead to an increase ratio of F-actin/G-actin. In addition, phosphorylated S308 and S310 in CAP1 promoted lung cancer cell proliferation, migration, and metastasis both in vitro and in vivo. When de-phosphorylated, these two sites in CAP1 showed the opposite effect. Phosphorylation of CAP1 can promote epithelial–mesenchymal transition (EMT). Conclusion These findings indicated that CAP1 phosphorylation can promote lung cancer proliferation, migration, and invasion. Phosphorylation sites of CAP1 might be a novel target for lung cancer treatment.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258951
Author(s):  
Dominic Leiser ◽  
Santanu Samanta ◽  
John Eley ◽  
Josh Strauss ◽  
Michael Creed ◽  
...  

Radiation therapy plays a major role in the treatment of lung cancer patients. However, cancer cells develop resistance to radiation. Tumor radioresistance is a complex multifactorial mechanism which may be dependent on DNA damage and repair, hypoxic conditions inside tumor microenvironment, and the clonal selection of radioresistant cells from the heterogeneous tumor site, and it is a major cause of treatment failure in non–small cell lung cancer (NSCLC). In the present investigation caveolin-1 (CAV-1) has been observed to be highly expressed in radiation resistant A549 lung cancer cells. CRISPR-Cas9 knockout of CAV-1 reverted the cells to a radio sensitive phenotype. In addition, CAV-1 overexpression in parental A549 cells, led to radiation resistance. Further, gene expression analysis of A549 parental, radiation resistant, and caveolin-1 overexpressed cells, exhibited overexpression of DNA repair genes RAD51B, RAD18, SOX2 cancer stem cell marker, MMPs, mucins and cytoskeleton proteins in resistant and caveolin-1 over expressed A549 cells, as compared to parental A549 cells. Bioinformatic analysis shows upregulation of BRCA1, Nuclear Excision DNA repair, TGFB and JAK/STAT signaling pathways in radioresistant and caveolin-1 overexpressed cells, which may functionally mediate radiation resistance. Immunohistochemistry data demonstrated heterogeneous expression of CAV-1 gene in human lung cancer tissues, which was analogous to its enhanced expression in human lung cancer cell line model and mouse orthotopic xenograft lung cancer model. Also, TCGA PanCancer clinical studies have demonstrated amplification, deletions and missense mutation in CAV-1 gene in lung cancer patients, and that CAV-1 alteration has been linked to poor prognosis, and poor survival in lung cancer patients. Interestingly, we have also optimized ELISA assay to measure caveolin-1 protein in the blood of A549 radiation resistant human xenograft preclinical mouse model and discovered higher level of caveolin-1 (950 pg/ml) in tumor bearing animals treated with radiation, as compared to xenograft with radiosensitive lung cancer cells (450 pg/ml). Thus, we conclude that caveolin-1 is involved in radio-resistance and contributes to tumor aggression, and it has potential to be used as prognostic biomarker for radiation treatment response, and tumor progression for precision medicine in lung cancer patients.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Yu Zhong ◽  
Liting Yang ◽  
Fang Xiong ◽  
Yi He ◽  
Yanyan Tang ◽  
...  

AbstractActin filament associated protein 1 antisense RNA 1 (named AFAP1-AS1) is a long non-coding RNA and overexpressed in many cancers. This study aimed to identify the role and mechanism of AFAP1-AS1 in lung cancer. The AFAP1-AS1 expression was firstly assessed in 187 paraffin-embedded lung cancer and 36 normal lung epithelial tissues by in situ hybridization. The migration and invasion abilities of AFAP1-AS1 were investigated in lung cancer cells. To uncover the molecular mechanism about AFAP1-AS1 function in lung cancer, we screened proteins that interact with AFAP1-AS1 by RNA pull down and the mass spectrometry analyses. AFAP1-AS1 was highly expressed in lung cancer clinical tissues and its expression was positively correlated with lung cancer patients’ poor prognosis. In vivo experiments confirmed that AFAP1-AS1 could promote lung cancer metastasis. AFAP1-AS1 promoted lung cancer cells migration and invasion through interacting with Smad nuclear interacting protein 1 (named SNIP1), which inhibited ubiquitination and degradation of c-Myc protein. Upregulation of c-Myc molecule in turn promoted the expression of ZEB1, ZEB2, and SNAIL gene, which ultimately enhanced epithelial to mesenchymal transition (EMT) and lung cancer metastasis. Understanding the molecular mechanism by which AFAP1-AS1 promotes lung cancer’s migration and invasion may provide novel therapeutic targets for lung cancer patients’ early diagnosis and therapy.


Author(s):  
Elham Hoveizi ◽  
Fatemeh Fakharzadeh Jahromi

Background: The development of effective anticancer drugs is a significant health issue. Previous studies showed that members of the benzimidazole family have anticancer effects on several cancers Objectives: The present study investigated the cytotoxic effect of flubendazole on A549 human lung cancer cells. Methods: The A549 cells were treated with flubendazole at 1, 2, 5, and 10 µM concentrations for three days. Cell viability was measured by the MTT assay and Acridine orange staining. Also, the expressions of P62 and Beclin -1 were analyzed by qRT-PCR analysis. Results: Cell viability of A549 cells, in a concentration-dependent manner, showed significant differences between the treatment and control groups, and the IC50 value was determined to be 2 µM. Also, flubendazole reduced the expression of P62 and increased the expression of Beclin 1 in treated cells. Conclusions: Flubendazole induces cell death in A549 cells in a dose and time-dependent manner and can offer new factors in lung cancer therapeutic strategies.


Author(s):  
Wei-Zhen Liu ◽  
Nian Liu

Propofol has been widely used in lung cancer resections. Some studies have demonstrated that the effects of propofol might be mediated by microRNAs (miRNAs). This study aimed to investigate the effects and mechanisms of propofol on lung cancer cells by regulation of miR-1284. A549 cells were treated with different concentrations of propofol, while transfected with miR-1284 inhibitor, si-FOXM1, and their negative controls. Cell viability, migration, and invasion, and the expression of miR-1284, FOXM1, and epithelial‐mesenchymal transition (EMT) factors were detected by CCK-8, Transwell, qRT-PCR, and Western blot assays, respectively. In addition, the regulatory and binding relationships among propofol, miR-1284, and FOXM1 were assessed, respectively. Results showed that propofol suppressed A549 cell viability, migration, and invasion, upregulated E-cadherin, and downregulated N-cadherin, vimentin, and Snail expressions. Moreover, propofol significantly promoted the expression of miR-1284. miR-1284 suppression abolished propofol-induced decreases of cell viability, migration, and invasion, and increased FOXM1 expression and the luciferase activity of FOXM1-wt. Further, miR-1284 negatively regulated FOXM1 expression. FOXM1 knockdown reduced cell viability, migration, and invasion by propofol treatment plus miR-1284 suppression. In conclusion, our study indicated that propofol could inhibit cell viability, migration, invasion, and the EMT process in lung cancer cells by regulation of miR-1284.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. e18038-e18038
Author(s):  
Baohui Han ◽  
Yu Dong ◽  
Yanwei Zhang ◽  
Bo Jin

e18038 Background: Background: As the non-smoking Asian patients with adenocarcinoma of the EGFR gene tend to have higher mutation rate, and serum CEA levels in patients with lung cancer, especially adenocarcinoma, high expression in many recent years, studies have also found that serum CEA levels in EGFR-changes before and after TKI therapy efficacy and treatment are closely related. However, whether serum CEA level and EGFR gene mutations is a correlation between two biomarkers. This study attempts to explore its relevance between EGFR gene mutations and analysis of serum CEA levels in non-smoking patients with lung cancer and it’s various clinical and pathological features. Methods: 84 cases of histologically confirmed non-smoking history in newly diagnosed lung cancer patients, respectively, serum CEA levels and histological detection of EGFR gene. According to the expression level of serum CEA patients were divided into high expression and did not express two groups were compared in patients with EGFR gene mutations. Results: 58/84 cases were found with activity EGFR gene mutations, the overall mutation rate was 69.0%, serum CEA levels high expression of EGFR gene mutation was significantly higher than non-expression group (serum CEA levels were <5ng/ml, ≥ 5ng/ml <20ng/ml, ≥ 20ng/ml patients with EGFR gene mutations histology were 63.2%, 70.8%, 81.8%). Conclusions: Non-smoking lung cancer patients with serum CEA levels and EGFR gene mutations was positively correlated.


Sign in / Sign up

Export Citation Format

Share Document