scholarly journals A Regulatory Loop Involving Notch and Wnt Signaling Maintains Leukemia Stem Cells in T-Cell Acute Lymphoblastic Leukemia

Author(s):  
Ling Zhang ◽  
Jieying Wu ◽  
Yashu Feng ◽  
Bijay Khadka ◽  
Zhigang Fang ◽  
...  

Leukemia-initiating cells play critical role in relapse, resistance to therapies and metastases but the mechanism remains largely elusive. We report that β-catenin is over-expressed in almost all T-ALL patients and flow sorted β-cateninhigh fractions are highly resistant to therapy, leading to liver metastases in nude mice as well as dysregulated lncRNAs. Pharmacological inhibition through XAV-939 as well as si-RNA mediated inhibition of β-catenin is initially effective in re-sensitization to therapy, however, prolonged inhibition shifts dependency from β-catenin to Notch signaling, with particularly high levels of receptors Notch 1 and Notch 2. The results are verifiable in a cohort of T-ALL patients comprising of responders vs. those who have progressed, with β-catenin, Notch 1 and Notch 2 elevated in progressed patients. Further, in patients-derived cells, silencing of Notch 1 or Notch 2 does not counter resistance to β-catenin inhibition, rather pharmacological pan-Notch inhibition is needed to overcome resistance and its effect on in vitro tumor sphere formations as well as in vivo liver metastases. Thus, wnt and Notch signaling are part of a regulatory loop mutually compensating for each other in T-ALL, while ensuring the maintenance of stem cell phenotype.

2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 226.3-226
Author(s):  
M. Filipović ◽  
A. Šućur ◽  
D. Flegar ◽  
Z. Jajić ◽  
M. Ikić Matijašević ◽  
...  

Background:Osteoclasts mediate periarticular and systemic bone loss in rheumatoid arthritis (RA). Osteoclast progenitor cells (OCPs) derived from the myeloid lineage are susceptible to regulation through Notch signaling. Murine bone marrow and splenic OCPs, identified as CD45+Ly6G-CD3-B220-NK1.1-CD11blo/+CD115+CCR2+ cells, are specifically increased in arthritis. We previously identified an increased frequency of OCPs expressing Notch receptors in arthritic mice.Objectives:Several studies suggested that Notch signaling modulation affects the course of experimental arthritis. We aimed to determine the effects of Notch receptor signaling inhibition on OCP activity and arthritis severity in murine collagen-induced arthritis (CIA).Methods:Male C57/Bl6 and DBA mice were immunized with chicken type II collagen and treated with i.p. injections of anti-Notch 1 neutralizing antibodies (1mg/kg). Notch receptor 1 through 4 expression on OCPs was analyzed by flow cytometry in periarticular bone marrow (PBM) and spleen (SPL). Gene expression of Notch receptors, ligands and transcription targets as well as osteoclast differentiation genes RANK, cFos and cFms was determined by qPCR from tissues and sorted OCPs. FACS sorted OCPs were stimulated by osteoclastogenic factors (M-CSF and RANKL), in control, IgG, Jagged (Jag)1 or Delta-like (DLL)1 coated wells, with or without anti-Notch 1 antibodies. Research was approved by the Ethics Committee.Results:We confirmed the expression of Notch receptors on OCPs by flow cytometry with Notch 1 and 2 being most abundantly expressed (around 25% and 40% positive OCPs in PBM and 35% and 20% in SPL respectively), with a significant increase of Notch 2 expression in arthritis. Seeding OCPs on DLL1 coated wells significantly increased while seeding on Jag1 coated wells significantly decreased osteoclastogenesis as reflected on the number of TRAP+ osteoclasts and expression of osteoclast differentiation genes. The addition of anti-Notch 1 antibodies to ligand-stimulated OCPs resulted in an increased number of TRAP+ osteoclasts, partially reversing Jag1 inhibition. In vivo treatment with anti-Notch 1 antibodies did not affect total OCP frequency, but increased expression of Notch 4 both in PBM and SPL as seen by flow cytometry and qPCR. Additionally, anti-Notch 1 treatment stimulated Notch transcription factors HES and HEY. Both PBM and SPL cultured OCPs from anti-Notch 1 treated mice produced a higher number of large TRAP+ osteoclasts, doubling the area covered with osteoclasts in the latter compared to untreated mice. Increased osteoclastogenesis in vitro was further confirmed by an increased expression of osteoclast differentiation genes in the treated group.Conclusion:Our results confirm that Notch signaling may represent an important therapeutic target for the regulation of osteoclast activity in arthritis. Both in vitro and in vivo anti-Notch 1 neutralizing antibodies enhanced osteoclastogenesis in CIA model, implying an inhibitory role of Notch 1 signaling in osteoclast differentiation. As Notch 2 expression is increased on OCPs of arthritic mice, we next plan to determine the effects of Notch 2 neutralization on osteoclast activity and arthritis severity.References:[1]Ikić Matijašević M, Flegar D, Kovačić N, Katavić V, Kelava T, Šućur A, et al. Increased chemotaxis and activity of circulatory myeloid progenitor cells may contribute to enhanced osteoclastogenesis and bone loss in the C57BL/6 mouse model of collagen-induced arthritis. Clin Exp Immunol. 2016;186(3):321–35.[2]Šućur A, Filipović M, Flegar D, Kelava T, Šisl D, Lukač N, et al. Notch receptors and ligands in inflammatory arthritis – a systematic review. Immunology Letters 2020 Vol. 223, p. 106–14.Acknowledgements:The work has been supported by Croatian Science Foundation projects IP-2018-01-2414, UIP-2017-05-1965 and DOK-2018-09-4276.Disclosure of Interests:None declared.


Blood ◽  
1989 ◽  
Vol 73 (2) ◽  
pp. 381-390
Author(s):  
J Kurtzberg ◽  
TA Waldmann ◽  
MP Davey ◽  
SH Bigner ◽  
JO Moore ◽  
...  

Following our initial observation of in vivo conversion of CD7+, CD4-, CD8- acute lymphoblastic leukemia (ALL) cells from lymphoid to myeloid lineages (Proc Natl Acad Sci (USA) 81:253, 1984) we have studied eight additional cases of ALL with this leukemic cell phenotype. The CD7+, CD4-, CD8- phenotype was associated with a distinct clinical entity with those affected predominantly male (either less than 35 years or greater than 65 years of age), with frequent mediastinal and/or thymic masses, skin and CNS disease, high peripheral WBC counts, and bone marrow blasts that were morphologically L1 or not ascribable to a specific lineage. These patients did not respond to conventional chemotherapeutic regimens for either acute lymphoid or myeloid leukemias. No common karyotype or T-cell gene rearrangement pattern could be defined. Importantly, seven of eight patient's leukemic cells studied were capable of multilineage (myeloid, erythroid, monocytoid, megakaryocytoid, and lymphoid) differentiation in vitro. Data is presented suggesting that CD7+, CD4-, CD8- leukemias, in many instances, are leukemias of immature hematopoietic cells. The development of novel therapeutic approaches to this form of leukemia will be necessary to alter its poor prognosis.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1507-1507
Author(s):  
Wenxue Ma ◽  
Kristen M. Smith ◽  
Alejandro Gutierrez ◽  
Heather S. Leu ◽  
Qingfei Jiang ◽  
...  

Abstract Abstract 1507 Leukemia initiating cells (LIC) contribute to therapeutic resistance as a result of their capacity to accumulate mutations in pathways, such as the NOTCH1 receptor signaling pathway, that promote self-renewal and survival within specific niches. Activating mutations in NOTCH1 occur commonly in T cell acute lymphoblastic leukemia (T-ALL) and have been implicated in driving therapeutic resistance. However, the role of NOTCH1 activation in human T-ALL LIC propagation and LIC sensitivity to selective NOTCH1 receptor inhibition has not been examined. The difficulties in maintaining primary cultures of leukemia cells have hampered investigations into the biology of T-ALL LIC and underscore the need for a direct transplantation model to characterize human LIC in vivo and as a paradigm for screening candidate drugs that inhibit self-renewal pathways active in T-ALL LIC. Pediatric T-ALL serially transplantable LIC were found to be enriched in the CD34+CD4− and CD34+CD7− fractions of newly diagnosed patient samples. More recently, a CD7+CD1a− glucocorticoid resistant LIC population, capable of engrafting leukemia in NOD/SCID IL2Rƒn gamma null (NSG) mice, was identified in primary adult T-ALL without an in vitro expansion. In this study, we identified and molecularly characterized potential LIC populations in pediatric T-ALL without preceding in vitro culture and examined the role of NOTCH1 activation in LIC propagation. To further define the T-ALL LIC, CD34+CD2+CD7+ or CD34+CD2+CD7− cells were isolated from T-ALL primary patients' blood by FACS sorting and transplanted into neonatal RAG2−/− gamma chain−/− mice to determine their leukemic engraftment potential. Limiting dilution experiments were performed with cells from six T-ALL patient samples. Mice transplanted with CD34+CD2+CD7+ or CD34+CD2+CD7− cells developed a T-ALL-like disease characterized by pale bone marrow and enlarged spleen, thymus and liver. Hematopoietic organs were analyzed by flow cytometry and showed engraftment of bone marrow, spleen, thymus and liver. Furthermore, the disease could be serially transplanted. LIC were uniquely susceptible to targeted inhibition in vivo with a therapeutic human NOTCH1 negative regulatory region selective monoclonal antibody (mAb) while normal human hematopoietic progenitors were spared thereby highlighting the cell type and context specific effects of NOTCH signaling. Both the NOTCH1 mAb treatment and lentiviral shRNA knockdown of NOTCH1 reduced NOTCH1, HES1 and c-MYC transcript levels, underscoring the selectivity of NOTCH1 mAb inhibition of NOTCH signaling. These results demonstrate that CD34+CD2+CD7+ and CD34+CD2+CD7− subpopulations are enriched for LIC activity in pediatric T-ALL. Moreover, inhibition of NOTCH signaling by either mAb or shRNA-mediated Notch1 knockdown might be another strategy to target the LIC in T-ALL. Disclosures: No relevant conflicts of interest to declare.


2009 ◽  
Vol 17 (3-4) ◽  
pp. 72-77
Author(s):  
Leonardo Mirandola ◽  
Sara Larocca ◽  
Katia Rea ◽  
Giovanni Palma ◽  
Paola Comi ◽  
...  

Notch history begins in 1919 with Thomas Hunt Morgan studies on fruit fly mutants. From then, this gene aroused lively interest in the scientific community since it is involved in a wide variety of processes, including morphogenesis, tissue homeostasis, and stem cell maintenance. Deregulation of Notch signaling characterizes several human tumors. Hematopoietic system is affected by mutations of Notch receptors, Notch ligands, and proteins controlling their stability. Approximately 60% T acute lymphoblastic leukemia (T-ALL) patients carry activating Notch1 mutations prompting blasts growth. In addition, multiple myeloma is characterized by Notch signaling hyper-activation due to an abnormal expression of the Jagged2 ligand; this affects not only myeloma cells, but also their interaction with bone marrow microenvironment, influencing tumor burden and bone disease. These findings make Notch a rational target of a therapeutic approach. Inhibitors of the Notch activating enzyme, ?-Secretase, have been successfully used in vitro and in vivo and are currently under clinical trials for T-ALL and breast cancer. Yet a wide use of these inhibitors is prevented by frequently occurring drug resistance. To elucidate the mechanism underlying this phenomenon, a number of pathways have been identified mediating Notch biological effects: AKT and c-Myc are frequently deregulated in leukemic patients and account for resistance to ?-Secretase inhibitors by acting downstream Notch receptor. Therefore, the interaction of Notch with other cancer-associated proteins should be clarified to predict the biological outcome of a Notch targeted therapy and possibly, to exploit combined treatments against the key deregulated elements in Notch-associated cancers.


2015 ◽  
Vol 37 (5) ◽  
pp. 1693-1711 ◽  
Author(s):  
Da-Wei Sun ◽  
He-Da Zhang ◽  
Ling Mao ◽  
Chang-Fei Mao ◽  
Wei Chen ◽  
...  

Background/Aims: This study aims to investigate the effect of Luteolin on breast cancer in vitro and in vivo and the interaction between miRNAs and Notch signaling after Luteolin intervention, and illustrates the possible underlying mechanism and regulation loop. Methods: Cell growth/survival assays and cell cycle analyses were performed to evaluate cell survival in vitro. Scratch tests, cell invasion assays and tube formation assays were carried out to analyze cell viability and identify the impact of Luteolin on angiogenesis. Critical components in the Notch pathway including proteins and mRNAs were detected by Western blotting analyses, ELISA assays and real-time reverse transcription-polymerase chain reaction. Matrix metalloproteinases activity was evaluated by gelatin zymography analyses. MiRNAs were analyzed by miRNA expression assays. After MDA-MB-231 cells were separately transfected with Notch-1 siRNA/cDNA and miRNA mimics, the above assays were also carried out to examine potential tumor cell changes. Xenograft models were applied to evaluate the treatment potency of Luteolin in breast cancer. Results: Luteolin significantly inhibited breast cancer cell survival, cell cycle, tube formation and the expression of Notch signaling-related proteins and mRNAs, and regulated miRNAs. After introducing Notch-1 siRNA and miRNA mimics, MDA-MB-231 cells presented with changes in miRNA levels, reduced Notch signaling-related proteins, and decreased tumor survival, invasion and angiogenesis. Conclusion: Luteolin inhibits Notch signaling by regulating miRNAs. However, the effect of miRNAs on the Notch pathway could be either Luteolin-dependent or Luteolin-independent. Furthermore, Notch-1 alteration may inversely change miRNAs levels. Our data demonstrates that Luteolin, miRNAs and the Notch pathway are critical in breast cancer development and prognosis.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Wei Ni ◽  
Zirong Chen ◽  
Xin Zhou ◽  
Rongqiang Yang ◽  
Mu Yu ◽  
...  

AbstractMucoepidermoid carcinoma (MEC) is the most common type of salivary gland cancers and patients with advanced, metastatic, and recurrent MECs have limited therapeutic options and poor treatment outcomes. MEC is commonly associated with a chromosomal translocation t(11;19) (q14-21;p12-13) that encodes the CRTC1-MAML2 oncogenic fusion. The CRTC1-MAML2 fusion is required for MEC growth in part through inducing autocrine AREG-EGFR signaling. Growing evidence suggests that MEC malignancy is maintained by cancer stem-like cells. In this study, we aimed to determine critical signaling for maintaining MEC stem-like cells and the effect of combined targeting of stem cell signaling and CRTC1-MAML2-induced EGFR signaling on blocking MEC growth. First, we evaluated the significance of Notch signaling in regulating MEC stem-like cells. Aberrantly activated Notch signaling was detected in human fusion-positive MEC cells. The inhibition of Notch signaling with genetic or pharmacological inhibitors reduced oncosphere formation and ALDH-bright population in vitro and blocked the growth of MEC xenografts in vivo. Next, we investigated the effect of co-targeting Notch signaling and EGFR signaling, and observed enhanced inhibition on MEC growth in vivo. Collectively, this study identified a critical role of Notch signaling in maintaining MEC stem-like cells and tumor growth, and revealed a novel approach of co-targeting Notch and EGFR signaling as a potential effective anti-MEC treatment.


Blood ◽  
2011 ◽  
Vol 117 (26) ◽  
pp. 6999-7006 ◽  
Author(s):  
Sara I. Cunha ◽  
Kristian Pietras

Members of the TGF-β family act on many, if not all, cell types within the body, producing diverse and complex cellular outcomes. Activation of the endothelial cell-restricted TGF-β type I receptor ALK1 results from the binding of several different ligands of the TGF-β family, including bone morphogenetic protein (BMP) 9, BMP10, and TGF-β. Mounting genetic, pharmacologic, and histopathologic evidence supports a critical role for ALK1 signaling in regulation of both developmental and pathologic blood vessel formation. However, the precise function of TGF-β family signaling in endothelial cells is difficult to predict and appears highly context dependent because of the multitude of ligands and receptors influencing the final outcome. Pharmacologic inhibitors of ALK1 have recently been developed and will allow for more accurate studies of ALK1 function in vivo, as well as for assessment of ALK1 as a target for suppression of angiogenesis during tumor development. Herein, we will summarize the current view of ALK1 regulation of endothelial cell phenotype in vitro and in vivo as well as provide an outlook for the ongoing clinical trials of ALK1 inhibitors in malignant disease.


Blood ◽  
1989 ◽  
Vol 73 (2) ◽  
pp. 381-390 ◽  
Author(s):  
J Kurtzberg ◽  
TA Waldmann ◽  
MP Davey ◽  
SH Bigner ◽  
JO Moore ◽  
...  

Abstract Following our initial observation of in vivo conversion of CD7+, CD4-, CD8- acute lymphoblastic leukemia (ALL) cells from lymphoid to myeloid lineages (Proc Natl Acad Sci (USA) 81:253, 1984) we have studied eight additional cases of ALL with this leukemic cell phenotype. The CD7+, CD4-, CD8- phenotype was associated with a distinct clinical entity with those affected predominantly male (either less than 35 years or greater than 65 years of age), with frequent mediastinal and/or thymic masses, skin and CNS disease, high peripheral WBC counts, and bone marrow blasts that were morphologically L1 or not ascribable to a specific lineage. These patients did not respond to conventional chemotherapeutic regimens for either acute lymphoid or myeloid leukemias. No common karyotype or T-cell gene rearrangement pattern could be defined. Importantly, seven of eight patient's leukemic cells studied were capable of multilineage (myeloid, erythroid, monocytoid, megakaryocytoid, and lymphoid) differentiation in vitro. Data is presented suggesting that CD7+, CD4-, CD8- leukemias, in many instances, are leukemias of immature hematopoietic cells. The development of novel therapeutic approaches to this form of leukemia will be necessary to alter its poor prognosis.


Oncogene ◽  
2021 ◽  
Author(s):  
Jiuna Zhang ◽  
Xiaoyu Jiang ◽  
Jie Yin ◽  
Shiying Dou ◽  
Xiaoli Xie ◽  
...  

AbstractRING finger proteins (RNFs) play a critical role in cancer initiation and progression. RNF141 is a member of RNFs family; however, its clinical significance, roles, and mechanism in colorectal cancer (CRC) remain poorly understood. Here, we examined the expression of RNF141 in 64 pairs of CRC and adjacent normal tissues by real-time PCR, Western blot, and immunohistochemical analysis. We found that there was more expression of RNF141 in CRC tissue compared with its adjacent normal tissue and high RNF141 expression associated with T stage. In vivo and in vitro functional experiments were conducted and revealed the oncogenic role of RNF141 in CRC. RNF141 knockdown suppressed proliferation, arrested the cell cycle in the G1 phase, inhibited migration, invasion and HUVEC tube formation but promoted apoptosis, whereas RNF141 overexpression exerted the opposite effects in CRC cells. The subcutaneous xenograft models showed that RNF141 knockdown reduced tumor growth, but its overexpression promoted tumor growth. Mechanistically, liquid chromatography-tandem mass spectrometry indicated RNF141 interacted with KRAS, which was confirmed by Co-immunoprecipitation, Immunofluorescence assay. Further analysis with bimolecular fluorescence complementation (BiFC) and Glutathione-S-transferase (GST) pull-down assays showed that RNF141 could directly bind to KRAS. Importantly, the upregulation of RNF141 increased GTP-bound KRAS, but its knockdown resulted in a reduction accordingly. Next, we demonstrated that RNF141 induced KRAS activation via increasing its enrichment on the plasma membrane not altering total KRAS expression, which was facilitated by the interaction with LYPLA1. Moreover, KRAS silencing partially abolished the effect of RNF141 on cell proliferation and apoptosis. In addition, our findings presented that RNF141 functioned as an oncogene by upregulating KRAS activity in a manner of promoting KRAS enrichment on the plasma membrane in CRC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shuiyan Wu ◽  
You Jiang ◽  
Yi Hong ◽  
Xinran Chu ◽  
Zimu Zhang ◽  
...  

Abstract Background T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease with a high risk of induction failure and poor outcomes, with relapse due to drug resistance. Recent studies show that bromodomains and extra-terminal (BET) protein inhibitors are promising anti-cancer agents. ARV-825, comprising a BET inhibitor conjugated with cereblon ligand, was recently developed to attenuate the growth of multiple tumors in vitro and in vivo. However, the functional and molecular mechanisms of ARV-825 in T-ALL remain unclear. This study aimed to investigate the therapeutic efficacy and potential mechanism of ARV-825 in T-ALL. Methods Expression of the BRD4 were determined in pediatric T-ALL samples and differential gene expression after ARV-825 treatment was explored by RNA-seq and quantitative reverse transcription-polymerase chain reaction. T-ALL cell viability was measured by CCK8 assay after ARV-825 administration. Cell cycle was analyzed by propidium iodide (PI) staining and apoptosis was assessed by Annexin V/PI staining. BRD4, BRD3 and BRD2 proteins were detected by western blot in cells treated with ARV-825. The effect of ARV-825 on T-ALL cells was analyzed in vivo. The functional and molecular pathways involved in ARV-825 treatment of T-ALL were verified by western blot and chromatin immunoprecipitation (ChIP). Results BRD4 expression was higher in pediatric T-ALL samples compared with T-cells from healthy donors. High BRD4 expression indicated a poor outcome. ARV-825 suppressed cell proliferation in vitro by arresting the cell cycle and inducing apoptosis, with elevated poly-ADP ribose polymerase and cleaved caspase 3. BRD4, BRD3, and BRD2 were degraded in line with reduced cereblon expression in T-ALL cells. ARV-825 had a lower IC50 in T-ALL cells compared with JQ1, dBET1 and OTX015. ARV-825 perturbed the H3K27Ac-Myc pathway and reduced c-Myc protein levels in T-ALL cells according to RNA-seq and ChIP. In the T-ALL xenograft model, ARV-825 significantly reduced tumor growth and led to the dysregulation of Ki67 and cleaved caspase 3. Moreover, ARV-825 inhibited cell proliferation by depleting BET and c-Myc proteins in vitro and in vivo. Conclusions BRD4 indicates a poor prognosis in T-ALL. The BRD4 degrader ARV-825 can effectively suppress the proliferation and promote apoptosis of T-ALL cells via BET protein depletion and c-Myc inhibition, thus providing a new strategy for the treatment of T-ALL.


Sign in / Sign up

Export Citation Format

Share Document