scholarly journals SCG2 is a Prognostic Biomarker Associated With Immune Infiltration and Macrophage Polarization in Colorectal Cancer

Author(s):  
Hao Wang ◽  
Jinwen Yin ◽  
Yuntian Hong ◽  
Anli Ren ◽  
Haizhou Wang ◽  
...  

Colorectal cancer (CRC) is the second most lethal malignancy around the world. Limited efficacy of immunotherapy creates an urgent need for development of novel treatment targets. Secretogranin II (SCG2) is a member of the chromogranin family of acidic secretory proteins, has a role in tumor microenvironment (TME) of lung adenocarcinoma and bladder cancer. Besides, SCG2 is a stroma-related gene in CRC, its potential function in regulating tumor immune infiltration of CRC needs to be fully elucidated. In this study, we used western blot, real-time PCR, immunofluorescence and public databases to evaluate SCG2 expression levels and distribution. Survival analysis and functional enrichment analysis were performed. We examined TME and tumor infiltrating immune cells using ESTIMATE and CIBERSORT algorithm. The results showed that SCG2 expression was significantly decreased in CRC tumor tissues, and differentially distributed between tumor and adjacent normal tissues. SCG2 was an independent prognostic predictor in CRC. High expression of SCG2 correlated with poor survival and advanced clinical stage in CRC patients. SCG2 might regulate multiple tumor- and immune-related pathways in CRC, influence tumor immunity by regulating infiltration of immune cells and macrophage polarization in CRC.

2021 ◽  
Vol 18 (6) ◽  
pp. 9336-9356
Author(s):  
Sidan Long ◽  
◽  
Shuangshuang Ji ◽  
Kunmin Xiao ◽  
Peng Xue ◽  
...  

<abstract> <sec><title>Background</title><p>LTB4 receptor 1 (LTB4R), as the high affinity leukotriene B4 receptor, is rapidly revealing its function in malignancies. However, it is still uncertain.</p> </sec> <sec><title>Methods</title><p>We investigated the expression pattern and prognostic significance of LTB4R in pan-cancer across different databases, including ONCOMINE, PrognoScan, GEPIA, and Kaplan-Meier Plotter, in this study. Meanwhile, we explored the significance of LTB4R in tumor metastasis by HCMDB. Then functional enrichment analysis of related genes was performed using GeneMANIA and DAVID. Lastly, utilizing the TIMER datasets, we looked into the links between LTB4R expression and immune infiltration in malignancies.</p> </sec> <sec><title>Results</title><p>In general, tumor tissue displayed higher levels of LTB4R expression than normal tissue. Although LTB4R had a negative influence on pan-cancer, a high expression level of LTB4R was protective of LIHC (liver hepatocellular carcinoma) patients' survival. There was no significant difference in the distribution of LTB4R between non-metastatic and metastatic tumors. Based on Gene Set Enrichment Analysis, LTB4R was implicated in pathways involved in inflammation, immunity, metabolism, and cancer diseases. The correlation between immune cells and LTB4R was found to be distinct across cancer types. Furthermore, markers of infiltrating immune cells, such as Treg, T cell exhaustion and T helper cells, exhibited different LTB4R-related immune infiltration patterns.</p> </sec> <sec><title>Conclusion</title><p>The LTB4R is associated with immune infiltrates and can be used as a prognostic biomarker in pan-cancer.</p> </sec> </abstract>


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jue Wang ◽  
Sheng Wu ◽  
Jiuwen Zhang ◽  
Jing Chen

Colorectal cancer (CRC) is a common malignant tumor and one of the leading causes of cancer-related deaths worldwide. CRC progression is greatly affected by the local microenvironment. In the study, we proposed a deep computational-based model for the classification of mRNA, lncRNA, and circRNA in exosomes. We, first, analyzed mRNA expression levels in CRC tumors and normal tissues. Secondly, we used GO and KEGG to analyze their functional enrichment. Thirdly, we analyzed the composition of immune cells in all TCGA samples and then evaluated the prognostic value of tumor-infiltrating immune cells in CRC. Lastly, we combined the TCGA dataset, i.e., COADN = 449 and ROADN = 6, for analysis and found that the expression levels of AKT3, LSM12, MEF2C, and RAB30 in exosomes were significantly correlated with tumor immune infiltration levels. The performance evaluation has shown that the proposed model based on neural networks performs better as compared to the existing methods. The proposed model can be used as a potential tool for the immune infiltration level and their role in cancer metastasis and progression, which can help us to explore potential strategies for CRC diagnosis, therapy, and prognosis.


2020 ◽  
Author(s):  
Ruyun Cai ◽  
Qian Lu ◽  
Da Wang

Abstract Background: Colorectal cancer (CRC) is one of the most common cancers in the world, and liver metastasis is the leading cause of colorectal cancer-related deaths. However, the mechanism of liver metastasis in CRC hasn’t been clearly elucidated.Methods: Three datasets from the Gene Expression Omnibus (GEO) database were analyzed to obtain differentially expressed genes (DEGs), which were subjected to functional enrichment analysis and protein-protein interaction analysis. Subsequently, mRNA-miRNA network was constructed and the associated DEGs and DEMs were performed for prognostic analysis. Finally, we did infiltration analysis of GAS1-associated immune cells. Results: We obtained 325 DEGs and 9 differentially expressed miRNAs (DEMs) between primary CRC and liver metastases. Enrichment analysis and protein-protein interactions (PPI) further revealed the involvement of DEGs in the formation of the inflammatory microenvironment and epithelial-mesenchymal transition (EMT) during the liver metastases process in CRC. Survival analysis demonstrated that low-expressed GAS1 as well as low-expressed hsa-miR-33b-5p was a favorable prognostic indicator of overall survival. Further exploration of GAS1 revealed that its expression was interrelated with the infiltration of immune cells in tumor tissues. Conclusions: In summary, DEGs, DEMs and their interactions found in liver metastasis of CRC may provide a basis for further understanding of the mechanism of CRC metastasis.


2020 ◽  
Author(s):  
Mengting Li ◽  
Wenjie Li ◽  
Haizhou Wang ◽  
Yanan Peng ◽  
Qian Hu ◽  
...  

Abstract BackgroundImmune cells and stromal cells in the tumor microenvironment (TME) play a vital role in the initiation and progression of colorectal cancer (CRC). The study aimed to screen valuable prognostic biomarkers in CRC on the basis of stromal and immune scores.MethodsWe used the ESTIMATE algorithm to calculate the immune and stromal scores of CRC samples in TCGA. Then the CRC samples were divided into high and low score groups based on the median value of the immune and stromal scores. Differentially expressed genes (DEGs) associated with immune score and stromal score were screened. WGCNA and univariate COX regression analysis were performed to further identify key prognostic genes. The prognostic value of key genes was validated based on The Gene Expression Profiling Interactive Analysis (GEPIA) and GSE17536 dataset. TIMER and CIBERSORT algorithms were applied to analyze the correlations among key genes and tumor-infiltrating immune cells. Results1314 upregulated and 4 downregulated genes associated with immune score and stromal score were identified, which were significantly enriched in immune-related biological processes and pathways. Among these DEGs, SPOCK1 and POSTN were identified as key prognostic genes. High expression of SPCOK1 and POSTN was associated with advanced clinical stage, T stage, N stage, and poor prognosis of CRC. The results from CIBERSORT and TIMER revealed that SPOCK1 and POSTN were associated with tumor-infiltrating immune cells, especially macrophages and neutrophils. Besides, SPOCK1 and POSTN expression were positively correlated with the expression of immune checkpoints.ConclusionCollectively, our results indicate that SPOCK1 and POSTN may be novel prognostic biomarkers in CRC and correlate with immune infiltrates.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Ruyun Cai ◽  
Qian Lu ◽  
Da Wang

Abstract Background Colorectal cancer (CRC) is one of the most common cancers in the world, and liver metastasis is the leading cause of colorectal cancer-related deaths. However, the mechanism of liver metastasis in CRC has not been clearly elucidated. Methods Three datasets from the Gene Expression Omnibus (GEO) database were analyzed to obtain differentially expressed genes (DEGs), which were subjected to functional enrichment analysis and protein-protein interaction analysis. Subsequently, mRNA-miRNA network was constructed, and the associated DEGs and DEMs were performed for prognostic analysis. Finally, we did infiltration analysis of growth arrest specific 1 (GAS1)-associated immune cells. Results We obtained 325 DEGs and 9 differentially expressed miRNAs (DEMs) between primary CRC and liver metastases. Enrichment analysis and protein-protein interactions (PPI) further revealed the involvement of DEGs in the formation of the inflammatory microenvironment and epithelial-mesenchymal transition (EMT) during the liver metastases process in CRC. Survival analysis demonstrated that low-expressed GAS1 as well as low-expressed hsa-miR-33b-5p was a favorable prognostic indicator of overall survival. Further exploration of GAS1 revealed that its expression was interrelated with the infiltration of immune cells in tumor tissues. Conclusions In summary, DEGs, DEMs, and their interactions found in liver metastasis of CRC may provide a basis for further understanding of the mechanism of CRC metastasis.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yang Shen ◽  
Li-rong Xu ◽  
Xiao Tang ◽  
Chang-po Lin ◽  
Dong Yan ◽  
...  

Abstract Background Atherosclerosis is a chronic inflammatory disease that affects multiple arteries. Numerous studies have shown the inherent immune diversity in atheromatous plaques and suggest that the dysfunction of different immune cells plays an important role in atherosclerosis. However, few comprehensive bioinformatics analyses have investigated the potential coordinators that might orchestrate different immune cells to exacerbate atherosclerosis. Methods Immune infiltration of 69 atheromatous plaques from different arterial beds in GSE100927 were explored by single-sample-gene-set enrichment analysis (presented as ssGSEA scores), ESTIMATE algorithm (presented as immune scores) and CIBERSORT algorithm (presented as relative fractions of 22 types of immune cells) to divide these plaques into ImmuneScoreL cluster (of low immune infiltration) and ImmuneScoreH cluster (of high immune infiltration). Subsequently, comprehensive bioinformatics analyses including differentially-expressed-genes (DEGs) analysis, protein–protein interaction networks analysis, hub genes analysis, Gene-Ontology-terms and KEGG pathway enrichment analysis, gene set enrichment analysis, analysis of expression profiles of immune-related genes, correlation analysis between DEGs and hub genes and immune cells were conducted. GSE28829 was analysed to cross-validate the results in GSE100927. Results Immune-related pathways, including interferon-related pathways and PD-1 signalling, were highly enriched in the ImmuneScoreH cluster. HLA-related (except for HLA-DRB6) and immune checkpoint genes (IDO1, PDCD-1, CD274(PD-L1), CD47), RORC, IFNGR1, STAT1 and JAK2 were upregulated in the ImmuneScoreH cluster, whereas FTO, CRY1, RORB, and PER1 were downregulated. Atheromatous plaques in the ImmuneScoreH cluster had higher proportions of M0 macrophages and gamma delta T cells but lower proportions of plasma cells and monocytes (p < 0.05). CAPG, CECR1, IL18, IGSF6, FBP1, HLA-DPA1 and MMP7 were commonly related to these immune cells. In addition, the advanced-stage carotid plaques in GSE28829 exhibited higher immune infiltration than early-stage carotid plaques. Conclusions Atheromatous plaques with higher immune scores were likely at a more clinically advanced stage. The progression of atherosclerosis might be related to CAPG, IGSF6, IL18, CECR1, FBP1, MMP7, FTO, CRY1, RORB, RORC, PER1, HLA-DPA1 and immune-related pathways (IFN-γ pathway and PD-1 signalling pathway). These genes and pathways might play important roles in regulating immune cells such as M0 macrophages, gamma delta T cells, plasma cells and monocytes and might serve as potential therapeutic targets for atherosclerosis.


2020 ◽  
Author(s):  
Qingyan Huang ◽  
Zhikang Yu ◽  
Yuhong Gan ◽  
Heming Wu ◽  
Zhixiong Zhong

Abstract Background: Interferon regulatory factor 4 (IRF4) is a transcription factor that involves in immune cells differentiation. However, it is not clear the relationship between IRF4 and tumor prognosis and immune infiltration.Methods: IRF4 expression levels in different cancers and corresponding normal tissues were analyzed by Oncomine database and Tumor Immune Estimation Resource (TIMER). The prognosis value of IRF4 was assessed by PrognoScan and Kaplan-Meier plotter. The correlation between IRF4 and tumor-infiltrating immune cells and immune cells markers was performed by TIMER and Gene Expression Profiling Interactive Analysis (GEPIA). In addition, we explored the genes regulated by IRF4 in Gene Transcription Regulation Database (GTRD) and then put the above genes in Enrich online tool for Gene Ontology (GO) and pathway enrichment analysis.Results: Decreased expression levels of IRF4 were observed in breast and colorectal cancers. Survival analysis shown that high level of IRF4 was associated with better prognostic outcome in breast and colorectal cancer patients. IRF4 expression was positively correlated with infiltrating levels of B cells, CD8+ T cells, T cells (general), dendritic cells (DCs), Th1, T cell exhaustion and monocytes, and immune cells markers. Beside, functional enrichment analysis of the potential genes regulated by IRF4 indicated that IRF4 may be involved in many important biological processes including immune regulation by regulating various genes.Conclusions: High expression of IRF4 shown better prognostic outcome for breast and colorectal cancers. IRF4 was associated with immune infiltration in breast and colorectal cancers. Therefore, IRF4 maybe serve as a potential prognostic biomarker in breast and colorectal cancers with immune infiltration.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Lingling Gao ◽  
Xiao Li ◽  
Qian Guo ◽  
Xin Nie ◽  
Yingying Hao ◽  
...  

Abstract Background Plakophilins (PKPs) are widely involved in gene transcription, translation, and signal transduction, playing a crucial role in tumorigenesis and progression. However, the function and potential mechanism of PKP1/2/3 in ovarian cancer (OC) remains unclear. It’s of great value to explore the expression and prognostic values of PKP1/2/3 and their potential mechanisms, immune infiltration in OC. Methods The expression levels, prognostic values and genetic variations of PKP1/2/3 in OC were explored by various bioinformatics tools and databases, and PKP2/3 were selected for further analyzing their regulation network and immune infiltration. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) enrichment were also conducted. Finally, the expression and prognosis of PKP2 were validated by immunohistochemistry. Results The expression level and prognosis of PKP1 showed little significance in ovarian cancer, and the expression of PKP2/3 mRNA and protein were upregulated in OC, showing significant correlations with poor prognosis of OC. Functional enrichment analysis showed that PKP2/3 and their correlated genes were significantly enriched in adaptive immune response, cytokine receptor activity, organization of cell–cell junction and extracellular matrix; KEGG analysis showed that PKP2/3 and their significantly correlated genes were involved in signaling pathways including cytokine-mediated signaling pathway, receptor signaling pathway and pathways in cancer. Moreover, PKP2/3 were correlated with lymphocytes and immunomodulators. We confirmed that high expression of PKP2 was significantly associated with advanced stage, poor differentiation and poor prognosis of OC patients. Conclusion Members of plakophilins family showed various degrees of abnormal expressions and prognostic values in ovarian cancer. PKP2/3 played crucial roles in tumorigenesis, aggressiveness, malignant biological behavior and immune infiltration of OC, and can be regarded as potential biomarker for early diagnosis and prognosis evaluation in OC.


2020 ◽  
Vol 2020 ◽  
pp. 1-43
Author(s):  
Beilei Wu ◽  
Lijun Tao ◽  
Daqing Yang ◽  
Wei Li ◽  
Hongbo Xu ◽  
...  

Objective. Stromal cells and immune cells have important clinical significance in the microenvironment of colorectal cancer (CRC). This study is aimed at developing a CRC gene signature on the basis of stromal and immune scores. Methods. A cohort of CRC patients (n=433) were adopted from The Cancer Genome Atlas (TCGA) database. Stromal/immune scores were calculated by the ESTIMATE algorithm. Correlation between prognosis/clinical characteristics and stromal/immune scores was assessed. Differentially expressed stromal and immune genes were identified. Their potential functions were annotated by functional enrichment analysis. Cox regression analysis was used to develop an eight-gene risk score model. Its predictive efficacies for 3 years, 5 years, overall survival (OS), and progression-free survival interval (PFI) were evaluated using time-dependent receiver operating characteristic (ROC) curves. The correlation between the risk score and the infiltering levels of six immune cells was analyzed using TIMER. The risk score was validated using an independent dataset. Results. Immune score was in a significant association with prognosis and clinical characteristics of CRC. 736 upregulated and two downregulated stromal and immune genes were identified, which were mainly enriched into immune-related biological processes and pathways. An-eight gene prognostic risk score model was conducted, consisting of CCL22, CD36, CPA3, CPT1C, KCNE4, NFATC1, RASGRP2, and SLC2A3. High risk score indicated a poor prognosis of patients. The area under the ROC curves (AUC) s of the model for 3 years, 5 years, OS, and PFI were 0.71, 0.70, 0.73, and 0.66, respectively. Thus, the model possessed well performance for prediction of patients’ prognosis, which was confirmed by an external dataset. Moreover, the risk score was significantly correlated with immune cell infiltration. Conclusion. Our study conducted an immune-related prognostic risk score model, which could provide novel targets for immunotherapy of CRC.


2020 ◽  
Author(s):  
Peipei Gao ◽  
Ting Peng ◽  
Canhui Cao ◽  
Shitong Lin ◽  
Ping Wu ◽  
...  

Abstract Background: Claudin family is a group of membrane proteins related to tight junction. There are many studies about them in cancer, but few studies pay attention to the relationship between them and the tumor microenvironment. In our research, we mainly focused on the genes related to the prognosis of ovarian cancer, and explored the relationship between them and the tumor microenvironment of ovarian cancer.Methods: The cBioProtal provided the genetic variation pattern of claudin gene family in ovarian cancer. The ONCOMINE database and Gene Expression Profiling Interactive Analysis (GEPIA) were used to exploring the mRNA expression of claudins in cancers. The prognostic potential of these genes was examined via Kaplan-Meier plotter. Immunologic signatures were enriched by gene set enrichment analysis (GSEA). The correlations between claudins and the tumor microenvironment of ovarian cancer were investigated via Tumor Immune Estimation Resource (TIMER).Results: In our research, claudin genes were altered in 363 (62%) of queried patients/samples. Abnormal expression levels of claudins were observed in various cancers. Among them, we found that CLDN3, CLDN4, CLDN6, CLDN10, CLDN15 and CLDN16 were significantly correlated with overall survival of patients with ovarian cancer. GSEA revealed that CLDN6 and CLDN10 were significantly enriched in immunologic signatures about B cell, CD4 T cell and CD8 T cell. What makes more sense is that CLDN6 and CLDN10 were found related to the tumor microenvironment. CLDN6 expression was negatively correlated with immune infiltration level in ovarian cancer, and CLDN10 expression was positively correlated with immune infiltration level in ovarian cancer. Further study revealed the CLDN6 expression level was negatively correlated with gene markers of various immune cells in ovarian cancer. And, the expression of CLDN10 was positive correlated with gene markers of immune cells in ovarian cancer.Conclusions: CLDN6 and CLDN10 were prognostic biomarkers, and correlated with immune infiltration in ovarian cancer. Our results revealed new roles for CLDN6 and CLDN10, and they were potential therapeutic targets in the treatment of ovarian cancer.


Sign in / Sign up

Export Citation Format

Share Document