scholarly journals Lossen Rearrangement of p-Toluenesulfonates of N-Oxyimides in Basic Condition, Theoretical Study, and Molecular Docking

2021 ◽  
Vol 9 ◽  
Author(s):  
Monika Kijewska ◽  
Abeer A. Sharfalddin ◽  
Łukasz Jaremko ◽  
Marta Cal ◽  
Bartosz Setner ◽  
...  

The sulfonic esters of N-oxyimides are a group of compounds with a wide range of biological activities, as well as a unique reactivity toward amines. They undergo this reaction with primary amines and other nucleophilic reagents according to a Lossen-like rearrangement. The reaction is initiated by nucleophilic attack on a carbonyl group in the succinimide ring followed by isocyanate formation, which next interacts with another nucleophile molecule forming an addition product (e.g., ureido or urethane derivative). However, the secondary amines are also susceptible to other reactions leading to products containing the maleimide ring formed by sulphonic acid elimination. In the case of tertiary amines, this reaction is predominant. To explain the phenomenon of the reactivity of the N- oxyimides toward different types of amines, we employed various spectroscopic and X-ray approaches as well as DFT calculation. Results suggest that the basicity of the amine used for the reaction plays a crucial role in the reaction mechanism that eventually dominates the entire chemical process. Moreover, we applied molecular docking to investigate the ability of the products to act as serine protease inhibitors using human leukocyte elastase (HLE).

Author(s):  
Sefa Celik ◽  
Funda Ozkok ◽  
Sevim Akyuz ◽  
Aysen E. Ozel

In drug-delivery systems containing nano-drug structures, targeting the tumorous tissue by anthraquinone molecules with high biological activity, and reaching and destroying tumors by their tumor-killing effect reveals remarkable results for the treatment of tumors. The various biological activities of anthraquinones and their derivatives depend on molecular conformation; hence, their intra-cell interaction mechanisms including deoxyribonucleic acid (DNA), ribonucleic acid (RNA), enzymes, and hormones. Computer-based drug design plays an important role in the design of drugs and the determination of goals for them. Molecular docking has been widely used in structure-based drug design. The effects of anthraquinone analogues in tumor cells as a result of their interaction with DNA strand has increased the number of studies done on them, and they have been shown to have a wide range of applications in chemistry, medicine, pharmacy, materials, and especially in the field of biomolecules.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3173
Author(s):  
Evangelos Mavridis ◽  
Eleftherios Bermperoglou ◽  
Eleni Pontiki ◽  
Dimitra Hadjipavlou-Litina

The five membered heterocyclic oxazole group plays an important role in drug discovery. Oxazolones present a wide range of biological activities. In this article the synthesis of 4-substituted-2-phenyloxazol-5(4H)-ones from the appropriate substituted aldehydes via an Erlenmeyer–Plochl reaction is reported. Subsequently, the corresponding benzamides were produced via a nucleophilic attack of a secondary amine on the oxazolone ring applying microwave irradiation. The compounds are obtained in good yields up to 94% and their structures were confirmed using IR, 1H-NMR, 13C-NMR and LC/MS data. The in vitro anti-lipid peroxidation activity and inhibitory activity against lipoxygenase and trypsin induced proteolysis of the novel derivatives were studied. Inhibition of carrageenin-induced paw edema (CPE) and nociception was also determined for compounds 4a and 4c. Oxazolones 2a and 2c strongly inhibit lipid peroxidation, followed by oxazolones 2b and 2d with an average inhibition of 86.5%. The most potent lipoxygenase inhibitor was the bisbenzamide derivative 4c, with IC50 41 μM. The benzamides 3c, 4a–4e and 5c were strong inhibitors of proteolysis. The replacement of the thienyl moiety by a phenyl group does not favor the protection. Compound 4c inhibited nociception higher than 4a. The replacement of thienyl groups by phenyl ring led to reduced biological activity. Docking studies of the most potent LOX inhibitor highlight interactions through allosteric mechanism. All the potent derivatives present good oral bioavailability.


1987 ◽  
Vol 7 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Peter M. Barling ◽  
Carolyn Lowe

Native bovine parathyroid hormone (bPTH) was found to be readily cleaved with human leukocyte elastase to yield the fragments bPTH(1–41) and bPTH(42–84). These were then isolated by reverse-phase HPLC and characterised by gas-phase sequencing and amino acid analysis. The biological activities of these fragments were assessed in an adenylate cyclase bioassay using the rat osteosarcoma cell line UMR106. bPTH(1–41) was found to have approximately twice the molar potency of the native hormone from which it was derived, bPTH(42–84) had no biological activity and did not modulate the adenylate cyclase response to these cells to the native hormone. The possible physiological significance of these observations is discussed.


2020 ◽  
Vol 32 (9) ◽  
pp. 2125-2129
Author(s):  
RAMARAJAN RAJALAKSHMI ◽  
RAJAVEL SANTHI ◽  
THANGARAJ ELAKKIYA

A series of new 4-thiazolidinone derivatives of 2-(4-chlorophenyl)-3-(6-(thiophen-2-yl)-4-p-tolyl-4H-1,3-oxazin-2-yl)- thiazolidin-4-one (7h-m) are synthesized because of its wide range of biological activities.1H & 13C NMR, IR studies were applied for the elucidation of all the synthesized compounds. All the synthesized compounds have been tested for antidiabetic and antioxidant activity in vitro method against standard. The analogs 7h-m was evaluated for α-amylase and α-glucosidase inhibitory potential. The structures of all the compounds have been screened for antioxidant activity using DPPH radical scavenging assay, NO scavenging method. Molecular docking studies were accomplished in addition to understand the binding affinity of those compounds with PDBID 2HR7 which showed that the synthesized derivatives bind in the lively binding site of the target protein


2021 ◽  
Author(s):  
ARUN KUMAR MALAISAMY ◽  
Mahalakshmi Murugan ◽  
Ashok Kumar Vairamuthu ◽  
Manikka Kubendran Aravind ◽  
Sathaiah Gunaseelan ◽  
...  

Abstract Background: Salmonella belongs to the Enterobacteriaceae family, a gram-negative, non-spore-forming, rod-shaped, motile, and pathogenic bacteria that transmit through unhygienic conditions. It is estimated that 21 million new infections arise every year, resulting in approximately 200,000 deaths. It is more prevalent among children, the old aged, and immunocompromised individuals. The frequent usage of classical antimicrobials has begun the increasing emergence of various drug-resistant pathogenic bacterial strains. Hence, this study was intended to evaluate the bioactive seaweed sulfated polysaccharides (SSP) against the ompF (outer membrane porin F) protein target of Salmonella typhi. SSP are sulfated compounds with a wide range of biological activities, such as anti-microbial, anti-allergy, anti-cancer, anti-coagulant, anti-inflammation, anti-oxidant, and anti-viral. Results: In this study, eleven compounds were targeted against S. typhi OmpF by molecular docking approach and were compared with two commercially available typhoid medications. The SSP showed good binding affinity compared to commercial drugs, particularly carrageenan/MIV-150, carrageenan lambda, fucoidan, and 3-Phenyllactate, ranked as top antagonists against OmpF. Further, pharmacokinetics and toxicology (ADMET) studies corroborated that SSP possessed drug-likeness and highly progressed in all parameters.Conclusion: AutoDockTools and Schrodinger's QikProp module results suggest that SSP could be a promising drug for extensively drug-resistant (XDR) S. typhi. To our best of knowledge, this is the first report on in-silico analysis of SSP against S. typhi OmpF. Thus, implying the capabilities of SSP's especially compounds like carrageenans, as a potential anti-microbial agent against Salmonella typhi infections. Eventually, advanced studies could corroborate SSPs to the next level of application in the crisis of XDR microbial diseases.


Author(s):  
Malaisamy Arunkumar ◽  
Murugan Mahalakshmi ◽  
Vairamuthu Ashokkumar ◽  
Manikka Kubendran Aravind ◽  
Sathaiah Gunaseelan ◽  
...  

Abstract Background Salmonella belongs to the Enterobacteriaceae family, a gram-negative, non-spore-forming, rod-shaped, motile, and pathogenic bacteria that transmit through unhygienic conditions. It is estimated that 21 million new infections arise every year, resulting in approximately 200,000 deaths. It is more prevalent among children, the old aged, and immunocompromised individuals. The frequent usage of classical antimicrobials has begun the increasing emergence of various drug-resistant pathogenic bacterial strains. Hence, this study was intended to evaluate the bioactive seaweed sulfated polysaccharides (SSPs) against the ompF (outer membrane porin F) protein target of Salmonella typhi. SSP is the sulfated compound with a wide range of biological activities, such as anti-microbial, anti-allergy, anti-cancer, anti-coagulant, anti-inflammation, anti-oxidant, and anti-viral. Results In this study, eleven compounds were targeted against S. typhi OmpF by the molecular docking approach and were compared with two commercially available typhoid medications. The SSP showed good binding affinity compared to commercial drugs, particularly carrageenan/MIV-150, carrageenan lambda, fucoidan, and 3-phenyllactate, ranked as top antagonists against OmpF. Further, pharmacokinetics and toxicology (ADMET) studies corroborated that SSP possessed drug-likeness and highly progressed in all parameters. Conclusions AutoDockTools and Schrodinger's QikProp module results suggest that SSP could be a promising drug for extensively drug-resistant (XDR) S. typhi. To the best of our knowledge, this is the first report on in silico analysis of SSP against S. typhi OmpF, thus implying the capabilities of SSPs especially compounds like carrageenans, as a potential anti-microbial agent against Salmonella typhi infections. Eventually, advanced studies could corroborate SSPs to the next level of application in the crisis of XDR microbial diseases. Graphical Abstract


2018 ◽  
Author(s):  
Diana Ainembabazi ◽  
Nan An ◽  
Jinesh Manayil ◽  
Kare Wilson ◽  
Adam Lee ◽  
...  

<div> <p>The synthesis, characterization, and activity of Pd-doped layered double hydroxides (Pd-LDHs) for for acceptorless amine dehydrogenation is reported. These multifunctional catalysts comprise Brønsted basic and Lewis acidic surface sites that stabilize Pd species in 0, 2+, and 4+ oxidation states. Pd speciation and corresponding cataytic performance is a strong function of metal loading. Excellent activity is observed for the oxidative transamination of primary amines and acceptorless dehydrogenation of secondary amines to secondary imines using a low Pd loading (0.5 mol%), without the need for oxidants. N-heterocycles, such as indoline, 1,2,3,4-tetrahydroquinoline, and piperidine, are dehydrogenated to the corresponding aromatics with high yields. The relative yields of secondary imines are proportional to the calculated free energy of reaction, while yields for oxidative amination correlate with the electrophilicity of primary imine intermediates. Reversible amine dehydrogenation and imine hydrogenation determine the relative imine:amine selectivity. Poisoning tests evidence that Pd-LDHs operate heterogeneously, with negligible metal leaching; catalysts can be regenerated by acid dissolution and re-precipitation.</p> </div> <br>


2019 ◽  
Author(s):  
Chem Int

Coumarin and its derivatives are widely spread in nature. Coumarin goes to agroup as benzopyrones, which consists of a benzene ring connected to a pyronemoiety. Coumarins displayed a broad range of pharmacologically useful profile.Coumarins are considered as a promising group of bioactive compounds thatexhibited a wide range of biological activities like anti-microbial, anti-viral,antiparasitic, anti-helmintic, analgesic, anti-inflammatory, anti-diabetic, anticancer,anti-oxidant, anti-proliferative, anti-convulsant, and antihypertensiveactivities etc. The coumarin compounds have immense interest due to theirdiverse pharmacological properties. In particular, these biological activities makecoumarin compounds more attractive and testing as novel therapeuticcompounds.


2017 ◽  
Vol 68 (4) ◽  
pp. 745-747 ◽  
Author(s):  
Marius Mioc ◽  
Sorin Avram ◽  
Vasile Bercean ◽  
Mihaela Balan Porcarasu ◽  
Codruta Soica ◽  
...  

Angiogenesis plays an important function in tumor proliferation, one of the main angiogenic promoters being the vascular endothelial growth factor (VEGF) which activates specific receptors, particularly VEGFR-2. Thus, VEGFR-2 has become an essential therapeutic target in the development of new antitumor drugs. 1,2,4-triazoles show a wide range of biological activities, including antitumor effect, which was documented by numerous reports. In the current study the selection of 5-mercapto-1,2,4-triazole structure (1H-3-styryl-5-benzylidenehydrazino-carbonyl-methylsulfanil-1,2,4-triazole, Tz3a.7) was conducted based on molecular docking that emphasized it as suitable ligand for VEGFR-2 and EGFR1 receptors. Compound Tz3a.7 was synthesized and physicochemically and biologically evaluated thus revealing a moderate antiproliferative activity against breast cancer cell line MDA-MB-231.


2019 ◽  
Vol 26 (23) ◽  
pp. 4403-4434 ◽  
Author(s):  
Susimaire Pedersoli Mantoani ◽  
Peterson de Andrade ◽  
Talita Perez Cantuaria Chierrito ◽  
Andreza Silva Figueredo ◽  
Ivone Carvalho

Neglected Diseases (NDs) affect million of people, especially the poorest population around the world. Several efforts to an effective treatment have proved insufficient at the moment. In this context, triazole derivatives have shown great relevance in medicinal chemistry due to a wide range of biological activities. This review aims to describe some of the most relevant and recent research focused on 1,2,3- and 1,2,4-triazolebased molecules targeting four expressive NDs: Chagas disease, Malaria, Tuberculosis and Leishmaniasis.


Sign in / Sign up

Export Citation Format

Share Document