scholarly journals The “Biological Weapons” of Ehrlichia chaffeensis: Novel Molecules and Mechanisms to Subjugate Host Cells

Author(s):  
Yasuko Rikihisa

Ehrlichia chaffeensis is an obligatory intracellular bacterium that causes human monocytic ehrlichiosis, an emerging, potentially fatal tick-borne infectious disease. The bacterium enters human cells via the binding of its unique outer-membrane invasin EtpE to the cognate receptor DNase X on the host-cell plasma membrane; this triggers actin polymerization and filopodia formation at the site of E. chaffeensis binding, and blocks activation of phagocyte NADPH oxidase that catalyzes the generation of microbicidal reactive oxygen species. Subsequently, the bacterium replicates by hijacking/dysregulating host-cell functions using Type IV secretion effectors. For example, the Ehrlichia translocated factor (Etf)-1 enters mitochondria and inhibits mitochondria-mediated apoptosis of host cells. Etf-1 also induces autophagy mediated by the small GTPase RAB5, the result being the liberation of catabolites for proliferation inside host cells. Moreover, Etf-2 competes with the RAB5 GTPase-activating protein, for binding to RAB5-GTP on the surface of E. chaffeensis inclusions, which blocks GTP hydrolysis and consequently prevents the fusion of inclusions with host-cell lysosomes. Etf-3 binds ferritin light chain to induce ferritinophagy to obtain intracellular iron. To enable E. chaffeensis to rapidly adapt to the host environment and proliferate, the bacterium must acquire host membrane cholesterol and glycerophospholipids for the purpose of producing large amounts of its own membrane. Future studies on the arsenal of unique Ehrlichia molecules and their interplay with host-cell components will undoubtedly advance our understanding of the molecular mechanisms of obligatory intracellular infection and may identify hitherto unrecognized signaling pathways of human hosts. Such data could be exploited for development of treatment and control measures for ehrlichiosis as well as other ailments that potentially could involve the same host-cell signaling pathways that are appropriated by E. chaffeensis.

2019 ◽  
Author(s):  
Venugopal Kannan ◽  
Chehade Sylia ◽  
Werkmeister Elisabeth ◽  
Barois Nicolas ◽  
Periz Javier ◽  
...  

SummaryToxoplasma gondii possesses an armada of secreted virulent factors that enable parasite invasion and survival into host cells. These factors are contained in specific secretory organelles, the rhoptries, micronemes and dense granules that release their content upon host cell recognition. Dense granules are secreted in a constitutive manner during parasite replication and play a crucial role in modulating host metabolic and immune responses. While the molecular mechanisms triggering rhoptry and microneme release upon host cell adhesion have been well studied, constitutive secretion remains a poorly explored aspect of T. gondii vesicular trafficking. Here, we investigated the role of the small GTPase Rab11A, a known regulator of exocytosis in eukaryotic cells. Our data revealed an essential role of Rab11A in promoting the cytoskeleton driven transport of DG and the release of their content into the vacuolar space. Rab11A also regulates transmembrane protein trafficking and localization during parasite replication, indicating a broader role of Rab11A in cargo exocytosis at the plasma membrane. Moreover, we found that Rab11A also regulates extracellular parasite motility and adhesion to host cells. In line with these findings, MIC2 secretion was altered in Rab11A-defective parasites, which also exhibited severe morphological defects. Strikingly, by live imaging we observed a polarized accumulation of Rab11A-positive vesicles and dense granules at the apical pole of extracellular motile parasites suggesting that a Rab11A-dependent apically polarized transport of cargo regulates parasite motility.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nicholas M. Negretti ◽  
Christopher R. Gourley ◽  
Prabhat K. Talukdar ◽  
Geremy Clair ◽  
Courtney M. Klappenbach ◽  
...  

AbstractCampylobacter jejuni is a foodborne pathogen that binds to and invades the epithelial cells lining the human intestinal tract. Maximal invasion of host cells by C. jejuni requires cell binding as well as delivery of the Cia proteins (Campylobacter invasion antigens) to the host cell cytosol via the flagellum. Here, we show that CiaD binds to the host cell protein IQGAP1 (a Ras GTPase-activating-like protein), thus displacing RacGAP1 from the IQGAP1 complex. This, in turn, leads to the unconstrained activity of the small GTPase Rac1, which is known to have roles in actin reorganization and internalization of C. jejuni. Our results represent the identification of a host cell protein targeted by a flagellar secreted effector protein and demonstrate that C. jejuni-stimulated Rac signaling is dependent on IQGAP1.


mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Anthony S. Piro ◽  
Dulcemaria Hernandez ◽  
Sarah Luoma ◽  
Eric M. Feeley ◽  
Ryan Finethy ◽  
...  

ABSTRACT Dynamin-like guanylate binding proteins (GBPs) are gamma interferon (IFN-γ)-inducible host defense proteins that can associate with cytosol-invading bacterial pathogens. Mouse GBPs promote the lytic destruction of targeted bacteria in the host cell cytosol, but the antimicrobial function of human GBPs and the mechanism by which these proteins associate with cytosolic bacteria are poorly understood. Here, we demonstrate that human GBP1 is unique among the seven human GBP paralogs in its ability to associate with at least two cytosolic Gram-negative bacteria, Burkholderia thailandensis and Shigella flexneri. Rough lipopolysaccharide (LPS) mutants of S. flexneri colocalize with GBP1 less frequently than wild-type S. flexneri does, suggesting that host recognition of O antigen promotes GBP1 targeting to Gram-negative bacteria. The targeting of GBP1 to cytosolic bacteria, via a unique triple-arginine motif present in its C terminus, promotes the corecruitment of four additional GBP paralogs (GBP2, GBP3, GBP4, and GBP6). GBP1-decorated Shigella organisms replicate but fail to form actin tails, leading to their intracellular aggregation. Consequentially, the wild type but not the triple-arginine GBP1 mutant restricts S. flexneri cell-to-cell spread. Furthermore, human-adapted S. flexneri, through the action of one its secreted effectors, IpaH9.8, is more resistant to GBP1 targeting than the non-human-adapted bacillus B. thailandensis. These studies reveal that human GBP1 uniquely functions as an intracellular “glue trap,” inhibiting the cytosolic movement of normally actin-propelled Gram-negative bacteria. In response to this powerful human defense program, S. flexneri has evolved an effective counterdefense to restrict GBP1 recruitment. IMPORTANCE Several pathogenic bacterial species evolved to invade, reside in, and replicate inside the cytosol of their host cells. One adaptation common to most cytosolic bacterial pathogens is the ability to coopt the host’s actin polymerization machinery in order to generate force for intracellular movement. This actin-based motility enables Gram-negative bacteria, such as Shigella species, to propel themselves into neighboring cells, thereby spreading from host cell to host cell without exiting the intracellular environment. Here, we show that the human protein GBP1 acts as a cytosolic “glue trap,” capturing cytosolic Gram-negative bacteria through a unique protein motif and preventing disseminated infections in cell culture models. To escape from this GBP1-mediated host defense, Shigella employs a virulence factor that prevents or dislodges the association of GBP1 with cytosolic bacteria. Thus, therapeutic strategies to restore GBP1 binding to Shigella may lead to novel treatment options for shigellosis in the future. Several pathogenic bacterial species evolved to invade, reside in, and replicate inside the cytosol of their host cells. One adaptation common to most cytosolic bacterial pathogens is the ability to coopt the host’s actin polymerization machinery in order to generate force for intracellular movement. This actin-based motility enables Gram-negative bacteria, such as Shigella species, to propel themselves into neighboring cells, thereby spreading from host cell to host cell without exiting the intracellular environment. Here, we show that the human protein GBP1 acts as a cytosolic “glue trap,” capturing cytosolic Gram-negative bacteria through a unique protein motif and preventing disseminated infections in cell culture models. To escape from this GBP1-mediated host defense, Shigella employs a virulence factor that prevents or dislodges the association of GBP1 with cytosolic bacteria. Thus, therapeutic strategies to restore GBP1 binding to Shigella may lead to novel treatment options for shigellosis in the future.


Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 58
Author(s):  
Xiaoqin Zhang ◽  
Xiaogang Li

Ferroptosis is a newly identified form of regulated cell death driven by iron-dependent phospholipid peroxidation and oxidative stress. Ferroptosis has distinct biological and morphology characteristics, such as shrunken mitochondria when compared to other known regulated cell deaths. The regulation of ferroptosis includes different molecular mechanisms and multiple cellular metabolic pathways, including glutathione/glutathione peroxidase 4(GPX4) signaling pathways, which are involved in the amino acid metabolism and the activation of GPX4; iron metabolic signaling pathways, which are involved in the regulation of iron import/export and the storage/release of intracellular iron through iron-regulatory proteins (IRPs), and lipid metabolic signaling pathways, which are involved in the metabolism of unsaturated fatty acids in cell membranes. Ferroptosis plays an essential role in the pathology of various kidneys diseases, including acute kidney injury (AKI), chronic kidney disease (CKD), autosomal dominant polycystic kidney disease (ADPKD), and renal cell carcinoma (RCC). Targeting ferroptosis with its inducers/initiators and inhibitors can modulate the progression of kidney diseases in animal models. In this review, we discuss the characteristics of ferroptosis and the ferroptosis-based mechanisms, highlighting the potential role of the main ferroptosis-associated metabolic pathways in the treatment and prevention of various kidney diseases.


mBio ◽  
2015 ◽  
Vol 6 (6) ◽  
Author(s):  
Dipu Mohan Kumar ◽  
Mingqun Lin ◽  
Qingming Xiong ◽  
Mathew James Webber ◽  
Comert Kural ◽  
...  

ABSTRACTObligate intracellular bacteria, such asEhrlichia chaffeensis, perish unless they can enter eukaryotic cells.E. chaffeensisis the etiological agent of human monocytic ehrlichiosis, an emerging infectious disease. To infect cells,Ehrlichiauses theCterminus of the outer membrane invasinentry-triggeringprotein (EtpE) ofEhrlichia(EtpE-C), which directly binds the mammalian cell surface glycosylphosphatidyl inositol-anchored protein, DNase X. How this binding drivesEhrlichiaentry is unknown. Here, using affinity pulldown of host cell lysates with recombinant EtpE-C (rEtpE-C), we identified two new human proteins that interact with EtpE-C: CD147 and heterogeneous nuclear ribonucleoprotein K (hnRNP-K). The interaction of CD147 with rEtpE-C was validated by far-Western blotting and coimmunoprecipitation of native EtpE with endogenous CD147. CD147 was ubiquitous on the cell surface and also present around foci of rEtpE-C-coated-bead entry. Functional neutralization of surface-exposed CD147 with a specific antibody inhibitedEhrlichiainternalization and infection but not binding. Downregulation of CD147 by short hairpin RNA (shRNA) impairedE. chaffeensisinfection. Functional ablation of cytoplasmic hnRNP-K by a nanoscale intracellular antibody markedly attenuated bacterial entry and infection but not binding. EtpE-C also interacted with neuronal Wiskott-Aldrich syndrome protein (N-WASP), which is activated by hnRNP-K. Wiskostatin, which inhibits N-WASP activation, and cytochalasin D, which inhibits actin polymerization, inhibitedEhrlichiaentry. Upon incubation with host cell lysate, EtpE-C but not an EtpE N-terminal fragment stimulatedin vitroactin polymerization in an N-WASP- and DNase X-dependent manner. Time-lapse video images revealed N-WASP recruitment at EtpE-C-coated bead entry foci. Thus, EtpE-C binding to DNase X drivesEhrlichiaentry by engaging CD147 and hnRNP-K and activating N-WASP-dependent actin polymerization.IMPORTANCEEhrlichia chaffeensis, an obligate intracellular bacterium, causes a blood-borne disease called human monocytic ehrlichiosis, one of the most prevalent life-threatening emerging tick-transmitted infectious diseases in the United States. The survival ofEhrlichiabacteria, and hence, their ability to cause disease, depends on their specific mode of entry into eukaryotic host cells. Understanding the mechanism by whichE. chaffeensisenters cells will create new opportunities for developing effective therapies to prevent bacterial entry and disease in humans. Our findings reveal a novel cellular signaling pathway triggered by an ehrlichial surface protein called EtpE to induce its infectious entry. The results are also important from the viewpoint of human cell physiology because three EtpE-interacting human proteins, DNase X, CD147, and hnRNP-K, are hitherto unknown partners that drive the uptake of small particles, including bacteria, into human cells.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
A. Leoni Swart ◽  
Bernhard Steiner ◽  
Laura Gomez-Valero ◽  
Sabina Schütz ◽  
Mandy Hannemann ◽  
...  

ABSTRACT Legionella pneumophila governs its interactions with host cells by secreting >300 different “effector” proteins. Some of these effectors contain eukaryotic domains such as the RCC1 (regulator of chromosome condensation 1) repeats promoting the activation of the small GTPase Ran. In this report, we reveal a conserved pattern of L. pneumophila RCC1 repeat genes, which are distributed in two main clusters of strains. Accordingly, strain Philadelphia-1 contains two RCC1 genes implicated in bacterial virulence, legG1 (Legionella eukaryotic gene 1), and ppgA, while strain Paris contains only one, pieG. The RCC1 repeat effectors localize to different cellular compartments and bind distinct components of the Ran GTPase cycle, including Ran modulators and the small GTPase itself, and yet they all promote the activation of Ran. The pieG gene spans the corresponding open reading frames of legG1 and a separate adjacent upstream gene, lpg1975. legG1 and lpg1975 are fused upon addition of a single nucleotide to encode a protein that adopts the binding specificity of PieG. Thus, a point mutation in pieG splits the gene, altering the effector target. These results indicate that divergent evolution of RCC1 repeat effectors defines the Ran GTPase cycle targets and that modulation of different components of the cycle might fine-tune Ran activation during Legionella infection. IMPORTANCE Legionella pneumophila is a ubiquitous environmental bacterium which, upon inhalation, causes a life-threatening pneumonia termed Legionnaires’ disease. The opportunistic pathogen grows in amoebae and macrophages by employing a “type IV” secretion system, which secretes more than 300 different “effector” proteins into the host cell, where they subvert pivotal processes. The function of many of these effector proteins is unknown, and their evolution has not been studied. L. pneumophila RCC1 repeat effectors target the small GTPase Ran, a molecular switch implicated in different cellular processes such as nucleocytoplasmic transport and microtubule cytoskeleton dynamics. We provide evidence that one or more RCC1 repeat genes are distributed in two main clusters of L. pneumophila strains and have divergently evolved to target different components of the Ran GTPase activation cycle at different subcellular sites. Thus, L. pneumophila employs a sophisticated strategy to subvert host cell Ran GTPase during infection.


2010 ◽  
Vol 190 (1) ◽  
pp. 143-157 ◽  
Author(s):  
Adrian Mehlitz ◽  
Sebastian Banhart ◽  
André P. Mäurer ◽  
Alexis Kaushansky ◽  
Andrew G. Gordus ◽  
...  

Many bacterial pathogens translocate effector proteins into host cells to manipulate host cell functions. Here, we used a protein microarray comprising virtually all human SRC homology 2 (SH2) and phosphotyrosine binding domains to comprehensively and quantitatively assess interactions between host cell proteins and the early phase Chlamydia trachomatis effector protein translocated actin-recruiting phosphoprotein (Tarp), which is rapidly tyrosine phosphorylated upon host cell entry. We discovered numerous novel interactions between human SH2 domains and phosphopeptides derived from Tarp. The adaptor protein SHC1 was among Tarp’s strongest interaction partners. Transcriptome analysis of SHC1-dependent gene regulation during infection indicated that SHC1 regulates apoptosis- and growth-related genes. SHC1 knockdown sensitized infected host cells to tumor necrosis factor–induced apoptosis. Collectively, our findings reveal a critical role for SHC1 in early C. trachomatis–induced cell survival and suggest that Tarp functions as a multivalent phosphorylation-dependent signaling hub that is important during the early phase of chlamydial infection.


2008 ◽  
Vol 190 (18) ◽  
pp. 6234-6242 ◽  
Author(s):  
Nicole C. Ammerman ◽  
M. Sayeedur Rahman ◽  
Abdu F. Azad

ABSTRACT As obligate intracellular, vector-borne bacteria, rickettsiae must adapt to both mammalian and arthropod host cell environments. Deciphering the molecular mechanisms of the interactions between rickettsiae and their host cells has largely been hindered by the genetic intractability of these organisms; however, research in other gram-negative pathogens has demonstrated that many bacterial determinants of attachment, entry, and pathogenesis are extracytoplasmic proteins. The annotations of several rickettsial genomes indicate the presence of homologs of the Sec translocon, the major route for bacterial protein secretion from the cytoplasm. For Rickettsia typhi, the etiologic agent of murine typhus, homologs of the Sec-translocon-associated proteins LepB, SecA, and LspA have been functionally characterized; therefore, the R. typhi Sec apparatus represents a mechanism for the secretion of rickettsial proteins, including virulence factors, into the extracytoplasmic environment. Our objective was to characterize such Sec-dependent R. typhi proteins in the context of a mammalian host cell infection. By using the web-based programs LipoP, SignalP, and Phobius, a total of 191 R. typhi proteins were predicted to contain signal peptides targeting them to the Sec translocon. Of these putative signal peptides, 102 were tested in an Escherichia coli-based alkaline phosphatase (PhoA) gene fusion system. Eighty-four of these candidates exhibited signal peptide activity in E. coli, and transcriptional analysis indicated that at least 54 of the R. typhi extracytoplasmic proteins undergo active gene expression during infections of HeLa cells. This work highlights a number of interesting proteins possibly involved in rickettsial growth and virulence in mammalian cells.


2000 ◽  
Vol 68 (12) ◽  
pp. 6602-6610 ◽  
Author(s):  
Elisabet V. Caler ◽  
Rory E. Morty ◽  
Barbara A. Burleigh ◽  
Norma W. Andrews

ABSTRACT Cell invasion by the protozoan parasite Trypanosoma cruzi involves activation of host signaling pathways and the recruitment and fusion of lysosomes at the parasite entry site. A major signaling pathway regulating invasion of fibroblasts, epithelial cells, and myoblasts involves mobilization of Ca2+ from intracellular stores and requires the activity of a T. cruzi serine peptidase, oligopeptidase B (OPB). Deletion of the OPB gene results in a marked defect in trypomastigote virulence, consistent with a greatly reduced cell invasion capacity. Here we show that uptake by macrophages, on the other hand, is largely independent of OPB expression and sensitive to inhibition of by cytochalasin D. The residual invasion capacity of OPBnull trypomastigotes in fibroblasts still involves lysosome recruitment, although in a significantly delayed fashion. Transient elevations in intracellular Ca2+concentrations were observed in host cells exposed to both wild-type and OPBnull trypomastigotes, but the signals triggered by the mutant parasites were less vigorous and delayed. The capacity of triggering elevation in host cell cyclic AMP (cAMP), however, was unaltered in OPBnull trypomastigotes. Modulation in cAMP levels preferentially affected the residual cell invasion capacity of OPBnull parasites, suggesting that this signaling pathway can play a dominant role in promoting cell invasion in the absence of the major OPB-dependent pathway.


2011 ◽  
Vol 79 (11) ◽  
pp. 4370-4381 ◽  
Author(s):  
Bing Zhu ◽  
Jeeba A. Kuriakose ◽  
Tian Luo ◽  
Efren Ballesteros ◽  
Sharu Gupta ◽  
...  

ABSTRACTEhrlichia chaffeensisis an obligately intracellular bacterium that modulates host cell gene transcription in the mononuclear phagocyte, but the host gene targets and mechanisms involved in transcriptional modulation are not well-defined. In this study, we identified a novel tandem repeat DNA-binding domain in theE. chaffeensis120-kDa tandem repeat protein (TRP120) that directly binds host cell DNA. TRP120 was observed by immunofluorescent microscopy in the nucleus ofE. chaffeensis-infected host cells and was detected in nuclear extracts by Western immunoblotting with TRP120-specific antibody. The TRP120 binding sites and associated host cell target genes were identified using high-throughput deep sequencing (Illumina) of immunoprecipitated DNA (chromatin immunoprecipitation and high-throughput DNA sequencing). Multiple em motif elicitation (MEME) analysis of the most highly enriched TRP120-bound sequences revealed a G+C-rich DNA motif, and recombinant TRP120 specifically bound synthetic oligonucleotides containing the motif. TRP120 target gene binding sites were mapped most frequently to intersecting regions (intron/exon; 49%) but were also identified in upstream regulatory regions (25%) and downstream locations (26%). Genes targeted by TRP120 were most frequently associated with transcriptional regulation, signal transduction, and apoptosis. TRP120 targeted inflammatory chemokine genes, CCL2, CCL20, and CXCL11, which were strongly upregulated duringE. chaffeensisinfection and were also upregulated by direct transfection with recombinant TRP120. This study reveals that TRP120 is a novel DNA-binding protein that is involved in a host gene transcriptional regulation strategy.


Sign in / Sign up

Export Citation Format

Share Document