scholarly journals Guanxin V Acts as an Antioxidant in Ventricular Remodeling

2022 ◽  
Vol 8 ◽  
Author(s):  
Bo Liang ◽  
Rui Li ◽  
Yi Liang ◽  
Ning Gu

Background: Our previous studies have shown that Guanxin V (GXV) is safe and effective in the treatment of ventricular remodeling (VR), but its mechanism related to oxidative stress has not been studied deeply.Methods: We applied integrating virtual screening and network pharmacology strategy to obtain the GXV-, VR-, and oxidative stress-related targets at first, and then highlighted the shared targets. We built the networks and conducted enrichment analysis. Finally, the main results were validated by molecular docking and solid experiments.Results: We obtained 251, 11,425, and 9,727 GXV-, VR-, and oxidative stress-related targets, respectively. GXV-component-target-VR and protein–protein interaction networks showed the potential mechanism of GXV in the treatment of VR. The following enrichment analysis results gathered many biological processes and “two GXV pathways” of oxidative stress-related to VR. All our main results were validated by molecular docking and solid experiments.Conclusion: GXV could be prescribed for VR through the mechanism, including complex interactions between related components and targets, as predicted by virtual screening and network pharmacology and validated by molecular docking and solid experiments. Our study promotes the explanation of the biological mechanism of GXV for VR.

2021 ◽  
Author(s):  
Xiting Wang ◽  
Tao Lu

Abstract Due to the severity of the COVID-19 epidemic, to identify a proper treatment for COVID-19 is of great significance. Traditional Chinese Medicine (TCM) has shown its great potential in the prevention and treatment of COVID-19. One of TCM decoction, Lianhua Qingwen decoction displayed promising treating efficacy. Nevertheless, the underlying molecular mechanism has not been explored for further development and treatment. Through systems pharmacology and network pharmacology approaches, we explored the potential mechanisms of Lianhua Qingwen treating COVID-19 and acting ingredients of Lianhua Qingwen decoction for COVID-19 treatment. Through this way, we generated an ingredients-targets database. We also used molecular docking to screen possible active ingredients. Also, we applied the protein-protein interaction network and detection algorithm to identify relevant protein groupings of Lianhua Qingwen. Totally, 605 ingredients and 1,089 targets were obtained. Molecular Docking analyses revealed that 35 components may be the promising acting ingredients, 7 of which were underlined according to the comprehensive analysis. Our enrichment analysis of the 7 highlighted ingredients showed relevant significant pathways that could be highly related to their potential mechanisms, e.g. oxidative stress response, inflammation, and blood circulation. In summary, this study suggests the promising mechanism of the Lianhua Qingwen decoction for COVID-19 treatment. Further experimental and clinical verifications are still needed.


2021 ◽  
Author(s):  
Lu Sun ◽  
Zining Wang ◽  
Jian Li ◽  
Li Xu ◽  
Xiaoou Xue

Abstract Background: Primary dysmenorrhea(PD)is the most common gynecologic disorder.Despite the prevalence is high, it is often underdiagnosed,undertreated and normalized even by patients themselves. Guizhi Fuling Formula (GFF) is experientially used for the treatment of PD in a long time. Therefore, the efficiency and potential mechanism are waiting to identify.Methods: We adopted network pharmacology integrated molecular docking strategy in this study.Based on published literatures, the relative compounds of GFF were selected preliminarily. Secondly, the putative targets of PD were obtained by wide-searching DisGeNET, OMIM, Drugbank and GeneCards databases.With protein-protein interaction(PPI) analysis, GO and KEGG pathway enrichment analysis and molecular docking ,we systematically evaluated the relationship of herb ingredients and disease targets.Results: The results showed that 30 ingredients of GFF and 43 hub targets made a difference.Under the further analysis,8 targets(EGFR,AKT1,PTGS2,TNF,ESR1,AHR,CTNNB1,CXCL8) were recognized as key therapeutic targets with excellent binding. The enrichment analyses indicated that the GFF had the potential to influence varieties of biological pathways, especially the pathways in cancer and steroid hormone biosynthesis, which play an important part in the pathogenesis of primary dysmenorrhea.Conclusion: GFF influenced primary dysmenorrhea through the synergistic effect of multiple components, multiple targets, and multiple pathways.This study predictedthe potential mechanism, hope that could made contribution for clinical application and scientific research.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Bruno R. B. Pires ◽  
Carolina Panis ◽  
Vinícius Dias Alves ◽  
Ana C. S. A. Herrera ◽  
Renata Binato ◽  
...  

Breast cancer is the leading cause of cancer-associated death among women worldwide. Its high mortality rate is related to resistance towards chemotherapies, which is one of the major challenges of breast cancer research. In this study, we used label-free mass spectrometry- (MS-) based proteomics to investigate the differences between circulating proteins in the plasma of patients with chemoresponsive and chemoresistant luminal A breast cancer. MS analysis revealed 205 differentially expressed proteins. Furthermore, we used in silico tools to build protein-protein interaction networks. Most of the upregulated proteins in the chemoresistant group were closely related and tightly linked. The predominant networks were related to oxidative stress, the inflammatory response, and the complement cascade. Through this analysis, we identified inflammation and oxidative stress as central processes of breast cancer chemoresistance. Furthermore, we confirmed our hypothesis by evaluating oxidative stress and performing cytokine profiling in our cohort. The connections among oxidative stress, inflammation, and the complement system described in our study seem to indicate a pivotal axis in breast cancer chemoresistance. Hence, these findings will have significant clinical implications for improving therapies to bypass breast cancer chemoresistance in the future.


2020 ◽  
Vol 22 (9) ◽  
pp. 612-624 ◽  
Author(s):  
Ze-Feng Wang ◽  
Ye-Qing Hu ◽  
Qi-Guo Wu ◽  
Rui Zhang

Background and Objective: A large number of people are facing the danger of fatigue due to the fast-paced lifestyle. Fatigue is common in some diseases, such as cancer. The mechanism of fatigue is not definite. Traditional Chinese medicine is often used for fatigue, but the potential mechanism of Polygonati Rhizoma (PR) is still not clear. This study attempts to explore the potential anti-fatigue mechanism of Polygonati Rhizoma through virtual screening based on network pharmacology. Methods: The candidate compounds of PR and the known targets of fatigue are obtained from multiple professional databases. PharmMapper Server is designed to identify potential targets for the candidate compounds. We developed a Herbal medicine-Compound-Disease-Target network and analyzed the interactions. Protein-protein interaction network is developed through the Cytoscape software and analyzed by topological methods. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment are carried out by DAVID Database. Finally, we develop Compound-Target-Pathway network to illustrate the anti-fatigue mechanism of PR. Results: This approach identified 12 active compounds and 156 candidate targets of PR. The top 10 annotation terms for GO and KEGG were obtained by enrichment analysis with 35 key targets. The interaction between E2F1 and PI3K-AKT plays a vital role in the anti-fatigue effect of PR due to this study. Conclusions: This study demonstrates that PR has multi-component, multi-target and multipathway effects.


2020 ◽  
Vol 23 (9) ◽  
pp. 955-971 ◽  
Author(s):  
Ling Shi ◽  
Qi-Guo Wu ◽  
Ju-Cheng Zhang ◽  
Guang-Ming Yang ◽  
Wei Liu ◽  
...  

Background and Objective: Mycoplasmal pneumonia (MP) can lead to inflammation, multiple system immune damage, and mixed infection in children. The pathogenesis is still unclear. Shuang-Huang-Lian (SHL) oral liquid can treat acute upper respiratory tract infection, acute bronchitis and light pneumonia. However, our current understanding of the molecular mechanisms supporting its clinical application still lags behind due to the lack of researches. It is difficult to understand the overall sensitization mechanism of SHL oral liquid. The purpose is to explain the mechanism of action of drugs in this study, which is useful to ensure the safety of medication for children. Methods: The therapeutic mechanism of SHL oral liquid was investigated by a system pharmacology approach integrating drug-likeness evaluation, oral bioavailability prediction, ADMET, protein-protein interaction worknet, Gene Ontology enrichment analysis, Kyoto Encyclopedia of Genes and Genomes database pathway performance, C-T-P network construction and molecular docking. Results: A total of 18 active ingredients contained in SHL oral liquid and 53 major proteins were screened out as effective players in the treatment of M. pneumoniae disease through some related pathways and molecular docking. The majority of targets, hubs and pathways were highly related to anti-mycoplasma therapy, immunity and inflammation process. Conclusions: This study shows that the anti-bacterial effect of SHL oral liquid has multicomponent, multi-target and multi-pathway phenomena. The proposed approach may provide a feasible tool to clarify the mechanism of traditional Chinese medicines and further develop their therapeutic potentials.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiang Yu ◽  
Peng Zhang ◽  
Kai Tang ◽  
Gengyang Shen ◽  
Honglin Chen ◽  
...  

Naringin (NG), as the most abundant component of Drynariae Rhizoma (Chinese name: Gusuibu), has been proved to be an antioxidant flavonoid on promoting osteoporotic fracture (OF) healing, but relevant research is scanty on the underlying mechanisms. We adopted target prediction, protein-protein interaction (PPI) analysis, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and molecular docking to establish a system pharmacology database of NG against OF. Totally 105 targets of naringin were obtained, including 26 common targets with OF. A total of 415 entries were obtained through GO Biological Process enrichment analysis ( P < 0.05 ), and 37 entries were obtained through KEGG pathway enrichment analysis with seven signaling pathways included ( P < 0.05 ), which were primarily concerned with p53, IL-17, TNF, estrogen, and PPAR signaling pathways. According to the results of molecular docking, naringin is all bound in the active pockets of the core targets with 3–9 hydrogen bonds through some connections such as hydrophobic interactions, Pi-Pi stacked interactions, and salt bridge, demonstrating that naringin binds tightly to the core targets. In general, naringin may treat OF through multiple targets and multiple pathways via regulating oxidative stress, etc. Notably, it is first reported that NG may regulate osteoclast differentiation and oxidative stress through the expression of the core targets so as to treat OF.


2021 ◽  
Vol 8 ◽  
Author(s):  
Guishu Wang ◽  
Bo Zhou ◽  
Zheyi Wang ◽  
Yufeng Meng ◽  
Yaqian Liu ◽  
...  

BackgroundAsthma is a chronic inflammatory disease characterized by Th2-predominant inflammation and airway remodeling. Modified Guo Min decoction (MGMD) has been an extensive practical strategy for allergic disorders in China. Although its potential anti-asthmatic activity has been reported, the exact mechanism of action of MGMD in asthma remains unexplored.MethodsNetwork pharmacology approach was employed to predict the active components, potential targets, and molecular mechanism of MGMD for asthma treatment, including drug-likeness evaluation, oral bioavailability prediction, protein–protein interaction (PPI) network construction and analysis, Gene Ontology (GO) terms, and Reactome pathway annotation. Molecular docking was carried out to investigate interactions between active compounds and potential targets.ResultsA total of 92 active compounds and 72 anti-asthma targets of MGMD were selected for analysis. The GO enrichment analysis results indicated that the anti-asthmatic targets of MGMD mainly participate in inflammatory and in airway remolding processes. The Reactome pathway analysis showed that MGMD prevents asthma mainly through regulation of the IL-4 and IL-13 signaling and the specialized pro-resolving mediators (SPMs) biosynthesis. Molecular docking results suggest that each bioactive compounds (quercetin, wogonin, luteolin, naringenin, and kaempferol) is capable to bind with STAT3, PTGS2, JUN, VEGFA, EGFR, and ALOX5.ConclusionThis study revealed the active ingredients and potential molecular mechanism by which MGMD treatment is effective against airway inflammation and remodeling in asthma through regulating IL-4 and IL-13 signaling and SPMs biosynthesis.


Author(s):  
Rong Zhao ◽  
Meng-Meng Zhang ◽  
Dan Wang ◽  
Wei Peng ◽  
Qing Zhang ◽  
...  

Background: Zanthoxylum bungeanum Maxim., a traditional Chinese herbal medicine, has been reported to possess therapeutic effects on diseases induced by oxidative stress (DOS), such as atherosclerosis and diabetes complication. However, the active components and its related mechanisms are still not systematically reported. Objective: The current study was aimed to explore the main active ingredients and its molecular mechanisms of Z. bungeanum for treating DOS using network pharmacology combined with molecular docking simulation. Methods: The active components of Z. bungeanum pericarps, in addition to the interacting targets, were identified from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. These components were filtered using the parameters of oral bioavailability and drug-likeness, and the targets related to DOS were obtained from the Genecards and OMIM database. Furthermore, the overlapping genes were obtained, and a protein-protein interaction was visualized using the STRING database. Next, the Cytoscape software was employed to build a disease/drug/component/target network, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using R software. Finally, the potential active compounds and their related targets were validated using molecular docking technology. Results: A total of 61 active compounds, 280 intersection genes, and 105 signaling pathways were obtained. Functional enrichment analysis suggested that DOS occurs possibly through the regulation of many biological pathways, such as AGERAGE and HIF-1 signaling pathways. Thirty of the identical target genes showed obvious compact relationships with others in the STRING analysis. Three active compounds, quercetin, diosmetin, and beta-sitosterol, interacting with the four key targets, exhibited strong affinities. Conclusion: The findings of this study not only indicate the main mechanisms involving in the oxidative stress-induced diseases, but also provide the basis for further research on the active components of Z. bungeanum for treating DOS.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yan-yun Liu ◽  
Li-hua Yu ◽  
Juan Zhang ◽  
Dao-jun Xie ◽  
Xin-xiang Zhang ◽  
...  

This study is aimed at exploring the possible mechanism of action of the Suanzaoren decoction (SZRD) in the treatment of Parkinson’s disease with sleep disorder (PDSD) based on network pharmacology and molecular docking. Traditional Chinese Medicine Systems Pharmacology (TCMSP) was used to screen the bioactive components and targets of SZRD, and their targets were standardized using the UniProt platform. The disease targets of “Parkinson’s disease (PD)” and “Sleep disorder (SD)” were collected by OMIM, GeneCards, and DisGeNET databases. Thereafter, the protein-protein interaction (PPI) network was constructed using the STRING platform and visualized by Cytoscape (3.7.2) software. Then, the DAVID platform was used to analyze the Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Cytoscape (3.7.2) software was also used to construct the network of the “herb-component-target-pathway.” The core active ingredients and core action targets of the drug were verified by molecular docking using AutoDock software. A total of 135 Chinese herbal components and 41 corresponding targets were predicted for the treatment of PDSD using SZRD. Fifteen important signaling pathways were screened, such as the cancer pathway, TNF signaling pathway, PI3K-AKT signaling pathway, HIF-1 signaling pathway, and Toll-like receptor signaling pathway. The results of molecular docking showed that the main active compounds could bind to the representative targets and exhibit good affinity. This study revealed that SZRD has the characteristics and advantages of “multicomponent, multitarget, and multipathway” in the treatment of PDSD; among these, the combination of the main active components of quercetin and kaempferol with the key targets of AKT1, IL6, MAPK1, TP53, and VEGFA may be one of the important mechanisms. This study provides a theoretical basis for further study of the material basis and molecular mechanism of SZRD in the treatment of PDSD.


2021 ◽  
Author(s):  
Youzi Dong ◽  
Quanlin Zhao

Abstract Through network pharmacology and molecular docking to explore the mechanism of astragalus-angelica compound in the treatment of diabetic nephropathy (DN). Screen the components and targets of astragalus and angelica compound on the TCMSP and the BATMAN-TCM, and use Cytoscape 3.7.2 to establish a component-target interaction network. Relevant targets of DN were searched through related databases, and the common targets of astragalus-angelica compound prescription and DN were obtained after comparison. The target protein interaction analysis and visualization processing were performed, and gene ontology (GO) analysis and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment analysis were performed through David database, and molecular docking was performed using PyMoL and AutoDock Vina software. Through network pharmacology screening, 142 main targets of astragalus-angelica compound in the treatment of DN have been identified. KEGG pathway enrichment analysis shows that the above key targets are related to apoptosis, oxidative stress, inflammation, insulin resistance and other related pathways. Molecular docking shows that the target protein has a good combination with the main active ingredients of astragalus-angelica compound. Astragalus-angelica compound may act on VEGFA, TP53, IL-6, TNF, mark1 and other targets to treat DN by regulating apoptosis, oxidative stress, inflammation, glucose and lipid metabolism and other pathways. Research methods based on network pharmacology and molecular docking provide new ideas for the pathogenesis and treatment of DN.


Sign in / Sign up

Export Citation Format

Share Document