scholarly journals Exploring the Pool of Pathogenic Variants of Amelogenesis Imperfecta: An Approach to the Understanding of Its Genetic Architecture

2021 ◽  
Vol 2 ◽  
Author(s):  
Blanca Urzúa ◽  
Ana Ortega-Pinto ◽  
Daniela Adorno-Farias ◽  
Irene Morales-Bozo ◽  
Sandra Rojas-Flores ◽  
...  

Objective: To identify which genes are associated with the clinical phenotype of amelogenesis Imperfecta (AI) and to elucidate which of these genes participate in the determination of isolated and syndromic forms.Methods: In this review, all data on mutations described in AI-related genes were obtained from HGMD® Professional. The data in relation to the mutations, inheritance, phenotype, type of AI and country were supplemented with information from the literature. The identity codes and frequency values were obtained from the dbSNP, ClinVar and OMIM databases. The percentage of specificity (PE) was determined for each gene.Results: HGMD® describes 27 genes involved in AI, which we propose to group into 5 categories: (1) genes whose mutations are associated only with isolated AI, (2) genes whose mutations cause only syndromic AI, (3) genes with both mutations that cause isolated AI and mutations responsible for other pathologies, (4) genes with mutations responsible for syndromic AI and mutations that cause other pathologies, and (5) genes with mutations that cause isolated AI and mutations that cause AI associated with syndromes and other pathologies. Using the PE calculation, the genes were ranked into 5 specificity groups. The genes of category 1 are specific for isolated AI, while the genes of categories 2 and 4 are non-specific. Interestingly, we observed that mutations in some genes were associated with different types of cancer.Conclusion: The ACP4, AMTN, MMP20, ODAPH, RELT, SLC24A4 and SP6 genes participate in causing isolated AI, and the CNNM4, DLX3 and FAM20A genes participate in causing syndromic forms of AI.

2020 ◽  
Vol 70 (12) ◽  
pp. 4594-4600

The purpose of this study was to characterize some types of biomass wastes resulted from different activities such as: agriculture, forestry and food industry using thermogravimetric and ICP-MS analyses. Also, it was optimized an ICP-MS method for the determination of As, Cd and Pb from biomass ash samples. The ICP-MS analysis revealed that the highest concentration of metals (As, Cd, Pb) was recorded in the wood waste ash sample, also the thermogravimetric analysis indicated that the highest amount of ash was obtained for the same sample (26.82%). The biomass wastes mentioned in this study are alternative recyclable materials, reusable as pellets and briquettes. Keywords: ash, biomass, ICP-MS, minor elements, TG


2018 ◽  
Vol 69 (5) ◽  
pp. 1139-1144
Author(s):  
Iosif Lingvay ◽  
Adriana Mariana Bors ◽  
Livia Carmen Ungureanu ◽  
Valerica Stanoi ◽  
Traian Rus

For the purpose of using three different types of painting materials for the inner protection of the transformer vats, their behavior was studied under actual conditions of operation in the transformer (thermal stress in electro-insulating fluid based on the natural ester in contact with copper for electro-technical use and electro-insulating paper). By comparing determination of the content in furans products (HPLC technique) and gases formed (by gas-chromatography) in the electro-insulating fluid (natural ester with high oleic content) thermally aged at 130 �C to 1000 hours in closed glass vessels, it have been found that the presence the investigated painting materials lead to a change in the mechanism and kinetics of the thermo-oxidation processes. These changes are supported by oxygen dissolved in oil, what leads to decrease both to gases formation CO2, CO, H2, CH4, C2H4 and C2H6) and furans products (5-HMF, 2-FOL, 2 -FAL and 2-ACF). The painting materials investigated during the heat treatment applied did not suffer any remarkable structural changes affecting their functionality in the electro-insulating fluid based on vegetable esters.


Medicina ◽  
2021 ◽  
Vol 57 (7) ◽  
pp. 679
Author(s):  
Monica Iuliana Ungureanu ◽  
Liliana Sachelarie ◽  
Radu Ciorap ◽  
Bogdan Aurelian Stana ◽  
Irina Croitoru ◽  
...  

Background and Objectives: Different types of food introduced gradually in the diet will expose children to different food allergens, increasing the chance of developing allergic diseases. The aim of our study was to determine if allergen-specific IgE values can influence, depending on the diet, the prediction of remission of urticaria in children. Materials and Methods: This prospective study was conducted in 132 patients diagnosed over two years with urticaria, admitted to “Sf. Maria” Clinical Pediatric Hospital Iaşi. Total IgE assay was performed by ELISA, and determination of specific serum IgE by the CLA System Quanti Scan method (Innogenetics, Heiden, Germany). Data were gathered and statistical analysis was performed using statistical software SPSS, using descriptive and inferential statistics. Results: The determination of specific IgE to food allergens was performed on a total of 132 cases. The values of specific IgE were positive for one or more food allergens in 84 patients (63.64%). The most common allergens involved were: cow’s milk in 33.3% cases, egg white in 22.6% cases, and hazelnuts in 11.9% cases. The specific IgE values for the different types of food included in our study had a predictive value for disease remission. Conclusions: The determination of specific IgE confirms the presence of a particular food allergen and may have predictive value for the future development of an allergic manifestation.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Surajit Bhattacharya ◽  
Hayk Barseghyan ◽  
Emmanuèle C. Délot ◽  
Eric Vilain

Abstract Background Whole genome sequencing is effective at identification of small variants, but because it is based on short reads, assessment of structural variants (SVs) is limited. The advent of Optical Genome Mapping (OGM), which utilizes long fluorescently labeled DNA molecules for de novo genome assembly and SV calling, has allowed for increased sensitivity and specificity in SV detection. However, compared to small variant annotation tools, OGM-based SV annotation software has seen little development, and currently available SV annotation tools do not provide sufficient information for determination of variant pathogenicity. Results We developed an R-based package, nanotatoR, which provides comprehensive annotation as a tool for SV classification. nanotatoR uses both external (DGV; DECIPHER; Bionano Genomics BNDB) and internal (user-defined) databases to estimate SV frequency. Human genome reference GRCh37/38-based BED files are used to annotate SVs with overlapping, upstream, and downstream genes. Overlap percentages and distances for nearest genes are calculated and can be used for filtration. A primary gene list is extracted from public databases based on the patient’s phenotype and used to filter genes overlapping SVs, providing the analyst with an easy way to prioritize variants. If available, expression of overlapping or nearby genes of interest is extracted (e.g. from an RNA-Seq dataset, allowing the user to assess the effects of SVs on the transcriptome). Most quality-control filtration parameters are customizable by the user. The output is given in an Excel file format, subdivided into multiple sheets based on SV type and inheritance pattern (INDELs, inversions, translocations, de novo, etc.). nanotatoR passed all quality and run time criteria of Bioconductor, where it was accepted in the April 2019 release. We evaluated nanotatoR’s annotation capabilities using publicly available reference datasets: the singleton sample NA12878, mapped with two types of enzyme labeling, and the NA24143 trio. nanotatoR was also able to accurately filter the known pathogenic variants in a cohort of patients with Duchenne Muscular Dystrophy for which we had previously demonstrated the diagnostic ability of OGM. Conclusions The extensive annotation enables users to rapidly identify potential pathogenic SVs, a critical step toward use of OGM in the clinical setting.


2020 ◽  
Vol 1679 ◽  
pp. 022045
Author(s):  
S B Rybalka ◽  
E A Kulchenkov ◽  
A A Demidov ◽  
N A Zhemoedov ◽  
A Yu Drakin ◽  
...  

2021 ◽  
Vol 11 (2) ◽  
pp. 597
Author(s):  
Milan Sokol ◽  
Rudolf Ároch ◽  
Katarína Lamperová ◽  
Martin Marton ◽  
Justo García-Sanz-Calcedo

This paper uses a parametric study to evaluate the significance of the rotational components of Earth’s motion in a seismic design. The parametric study is based on the procedures included in Eurocode 8, Part 6. Although the answer to the question of when the effects of rotational components are important is quite a complex one and requires a more in-depth study, our aim was to try to assess this question in a relatively quick manner and with acceptable accuracy. The first part of the paper is devoted to derivation of a simple formula that can be used for expressing the importance of rotational components in comparison with the classic seismic design without their usage. The quasi-static analysis, assuming inertial forces, is used. A crucial role plays the shape of the fundamental mode of the vibration. Due to simplicity reasons, well-known expression for estimation of the first eigenmode as an exponential function with different power coefficients that vary for different types of buildings is used. The possibility of changing the soil parameters is subsequently included into the formula for estimation of the fundamental frequency of tall buildings. In the next part, the overall seismic analyses of complex FEM models of 3D buildings and chimneys are performed. The results from those analyses are then compared with those from simplified calculations. The importance of the soil characteristics for determination of whether it is necessary to take into account the rotational effects is further discussed.


1982 ◽  
Vol 37 (11-12) ◽  
pp. 1161-1169 ◽  
Author(s):  
Paul Rösch

Abstract An analytical procedure has been developed for the determination of isotope exchange processes as exemplified by the 18O exchange catalysed by enzyme-nucleotide complexes. The model is able to handle more than one type of active site per reaction solution and is also able to distinguish between different types of inequivalence of the oxygens of enzyme bound Pi. Use of transition matrix formalism and basic statistical considerations lead directly to the simple model. A data refinement procedure is introduced and model calculations are shown.


Sign in / Sign up

Export Citation Format

Share Document