scholarly journals Ice Mass Loss in the Central Andes of Argentina Between 2000 and 2018 Derived From a New Glacier Inventory and Satellite Stereo-Imagery

2020 ◽  
Vol 8 ◽  
Author(s):  
Lidia Ferri ◽  
Inés Dussaillant ◽  
Laura Zalazar ◽  
Mariano H. Masiokas ◽  
Lucas Ruiz ◽  
...  

Based on the recently released National Glacier Inventory (NGI), we analyzed the characteristics and the mass balance rates of ice masses in the Argentinean Central Andes (ca. 30°–37° S). The NGI provides unprecedented information on area, number and distribution of different ice masses, including debris-covered glaciers and rock glaciers. In the Central Andes, a number of 8,076 ice masses were identified covering a total area of 1767 km2. For the period 2000–2018, a general lowering of the ice surface was observed with a region-wide mass balance rate of −0.18 ± 0.19 m w.e. yr−1. Clear differences depending on the debris coverage of the different ice masses were identified, with mass balance rates ranging from −0.36 ± 0.19 m w.e. yr−1 for partly debris-covered glaciers to −0.02 ± 0.19 m w.e. yr−1 for rock glaciers. Considering different sub-periods, the region-wide mass balance rate was slightly positive (+0.12 ± 0.23 m w. e. yr−1) from 2000 to 2009 and negative (−0.21 ± 0.30 m w.e. yr−1) from 2009 to 2018. A comparison with the Randolph Glacier Inventory (RGI version 6.0) indicates that the NGI provides more detailed information regarding different type of ice masses whereas region-wide mass balance rates show limited sensitivity to the choice of the inventory. The inclusion of rock glaciers and “debris-covered ice with rock glacier” in the NGI causes mass balance rates to be slightly less negative than when using the RGI. Since the Central Andes are experiencing an unprecedented decade-long drought, our study provides crucial information to estimate current and future hydrological contribution of the different type of ice masses to river discharge in the arid subtropical Andes.

2017 ◽  
Vol 58 (75pt2) ◽  
pp. 166-180 ◽  
Author(s):  
Gonzalo Barcaza ◽  
Samuel U. Nussbaumer ◽  
Guillermo Tapia ◽  
Javier Valdés ◽  
Juan-Luis García ◽  
...  

ABSTRACTThe first satellite-derived inventory of glaciers and rock glaciers in Chile, created from Landsat TM/ETM+ images spanning between 2000 and 2003 using a semi-automated procedure, is presented in a single standardized format. Large glacierized areas in the Altiplano, Palena Province and the periphery of the Patagonian icefields are inventoried. The Chilean glacierized area is 23 708 ± 1185 km2, including ~3200 km2of both debris-covered glaciers and rock glaciers. Glacier distribution varies as a result of climatic gradients with latitude and elevation, with 0.8% occurring in the Desert Andes (17°30′–32° S); 3.6% in the Central Andes (32–36° S), 6.2% in the Lakes District and Palena Province (36–46° S), and 89.3% in Patagonia and Tierra del Fuego (46–56° S). Glacier outlines, across all glacierized regions and size classes, updated to 2015 using Landsat 8 images for 98 complexes indicate a decline in areal extent affecting mostly clean-ice glaciers (−92.3 ± 4.6 km2), whereas debris-covered glaciers and rock glaciers in the Desert and Central Andes appear nearly unchanged in their extent. Glacier attributes estimated from this new inventory provide valuable insights into spatial patterns of glacier shrinkage for assessing future glacier changes in response to climate change.


Geology ◽  
2021 ◽  
Author(s):  
Joel S. Scheingross ◽  
Michael P. Lamb

Waterfall plunge pools experience cycles of sediment aggradation and scour that modulate bedrock erosion, habitat availability, and hazard potential. We calculate sediment flux divergence to evaluate the conditions under which pools deposit and scour sediment by comparing the sediment transport capacities of waterfall plunge pools (Qsc_pool) and their adjacent river reaches (Qsc_river). Results show that pools fill with sediment at low river discharge because the waterfall jet is not strong enough to transport the supplied sediment load out of the pool. As discharge increases, the waterfall jet strengthens, allowing pools to transport sediment at greater rates than in adjacent river reaches. This causes sediment scour from pools and bar building at the downstream pool boundary. While pools may be partially emptied of sediment at modest discharge, floods with recurrence intervals >10 yr are typically required for pools to scour to bedrock. These results allow new constraints on paleodischarge estimates made from sediment deposited in plunge pool bars and suggest that bedrock erosion at waterfalls with plunge pools occurs during larger floods than in river reaches lacking waterfalls.


1999 ◽  
Vol 45 (151) ◽  
pp. 559-567 ◽  
Author(s):  
Rijan Bhakta Kayastha ◽  
Tetsuo Ohata ◽  
Yutaka Ageta

AbstractA mass-balance model based on the energy balance at the snow or ice surface is formulated, with particular attention paid to processes affecting absorption of radiation. The model is applied to a small glacier, Glacier AX010 in the Nepalese Himalaya, and tests of its mass-balance sensitivity to input and climatic parameters are carried out. Calculated and observed area-averaged mass balances of the glacier during summer 1978 (June-September) show good agreement, namely -0.44 and -0.46 m w.e., respectively.Results show the mass balance is strongly sensitive to snow or ice albedo, to the effects of screening by surrounding mountain walls, to areal variations in multiple reflection between clouds and the glacier surface, and to thin snow covers which alter the surface albedo. In tests of the sensitivity of the mass balance to seasonal values of climatic parameters, the mass balance is found to be strongly sensitive to summer air temperature and precipitation but only weakly sensitive to relative humidity.


2010 ◽  
Vol 4 (4) ◽  
pp. 2593-2613 ◽  
Author(s):  
T. Bolch ◽  
T. Pieczonka ◽  
D. I. Benn

Abstract. Mass loss of Himalayan glaciers has wide-ranging consequences such as declining water resources, sea level rise and an increasing risk of glacial lake outburst floods (GLOFs). The assessment of the regional and global impact of glacier changes in the Himalaya is, however, hampered by a lack of mass balance data for most of the range. Multi-temporal digital terrain models (DTMs) allow glacier mass balance to be calculated since the availability of stereo imagery. Here we present the longest time series of mass changes in the Himalaya and show the high value of early stereo spy imagery such as Corona (years 1962 and 1970) aerial images and recent high resolution satellite data (Cartosat-1) to calculate a time series of glacier changes south of Mt. Everest, Nepal. We reveal that the glaciers are significantly losing mass with an increasing rate since at least ~1970, despite thick debris cover. The specific mass loss is 0.32 ± 0.08 m w.e. a−1, however, not higher than the global average. The spatial patterns of surface lowering can be explained by variations in debris-cover thickness, glacier velocity, and ice melt due to exposed ice cliffs and ponds.


2014 ◽  
Vol 7 (1) ◽  
pp. 129-148 ◽  
Author(s):  
K. Lindbäck ◽  
R. Pettersson ◽  
S. H. Doyle ◽  
C. Helanow ◽  
P. Jansson ◽  
...  

Abstract. We present ice thickness and bed topography maps with high spatial resolution (250 to 500 m) of a and-terminating section of the Greenland Ice Sheet derived from combined ground-based and airborne radar surveys. The data have a total area of ~12000 km2 and cover the whole ablation area of the outlet glaciers of Isunnguata Sermia, Russell, Leverett, Ørkendalen and Isorlersuup up to the long-term mass balance equilibrium line altitude at ~1600 m above sea level. The bed topography shows highly variable subglacial trough systems, and the trough of the Isunnguata Sermia Glacier is over-deepened and reaches an elevation of several hundreds of meters below sea level. The ice surface is smooth and only reflects the bedrock topography in a subtle way, resulting in a highly variable ice thickness. The southern part of our study area consists of higher bed elevations compared to the northern part. The covered area is one of the most studied regions of the Greenland Ice Sheet with studies of mass balance, dynamics, and supraglacial lakes, and our combined dataset can be valuable for detailed studies of ice sheet dynamics and hydrology. The compiled datasets of ground-based and airborne radar surveys are accessible for reviewers (password protected) at doi.pangaea.de/10.1594/pangaea.830314 and will be freely available in the final revised paper.


2011 ◽  
Vol 5 (1) ◽  
pp. 299-313 ◽  
Author(s):  
G. E. Flowers ◽  
N. Roux ◽  
S. Pimentel ◽  
C. G. Schoof

Abstract. Glacier surges are a well-known example of an internal dynamic oscillation whose occurrence is not a direct response to the external climate forcing, but whose character (i.e. period, amplitude, mechanism) may depend on the glacier's environmental or climate setting. We examine the dynamics of a small (∼5 km2) valley glacier in Yukon, Canada, where two previous surges have been photographically documented and an unusually slow surge is currently underway. To characterize the dynamics of the present surge, and to speculate on the future of this glacier, we employ a higher-order flowband model of ice dynamics with a regularized Coulomb-friction sliding law in both diagnostic and prognostic simulations. Diagnostic (force balance) calculations capture the measured ice-surface velocity profile only when non-zero basal water pressures are prescribed over the central region of the glacier, coincident with where evidence of the surge has been identified. This leads to sliding accounting for 50–100% of the total surface motion in this region. Prognostic simulations, where the glacier geometry evolves in response to a prescribed surface mass balance, reveal a significant role played by a bedrock ridge beneath the current equilibrium line of the glacier. Ice thickening occurs above the ridge in our simulations, until the net mass balance reaches sufficiently negative values. We suggest that the bedrock ridge may contribute to the propensity for surges in this glacier by promoting the development of the reservoir area during quiescence, and may permit surges to occur under more negative balance conditions than would otherwise be possible. Collectively, these results corroborate our interpretation of the current glacier flow regime as indicative of a slow surge that has been ongoing for some time, and support a relationship between surge incidence or character and the net mass balance. Our results also highlight the importance of glacier bed topography in controlling ice dynamics, as observed in many other glacier systems.


2020 ◽  
Author(s):  
Tobias Sauter ◽  
Anselm Arndt ◽  
Christoph Schneider

Abstract. Glacial changes play a key role both from a socio-economical and political, and scientific point of view. The identification and the understanding of the nature of these changes still poses fundamental challenges for climate, glacier and water research. Many studies aim to identify the climatic drivers behind the observed glacial changes using distributed surface mass and energy balance models. Distributed surface mass balance models, which translate the meteorological conditions on glaciers into local melting rates, thus offer the possibility to attribute and detect glacier mass and volume responses to changes in the climatic forcings. A well calibrated model is a suitable test-bed for sensitivity, detection and attribution analyses for many scientific applications and often serves as a tool for quantifying the inherent uncertainties. Here we present the open-source coupled snowpack and ice surface energy and mass balance model in Python COSIPY, which provides a lean, flexible and user-friendly framework for modelling distributed snow and glacier mass changes. The model has a modular structure so that the exchange of routines or parameterizations of physical processes is possible with little effort for the user. The model has a modular structure so that the exchange of routines or parameterizations of physical processes is possible with little effort for the user. The framework consists of a computational kernel, which forms the runtime environment and takes care of the initialization, the input-output routines, the parallelization as well as the grid and data structures. This structure offers maximum flexibility without having to worry about the internal numerical flow. The adaptive sub-surface scheme allows an efficient and fast calculation of the otherwise computationally demanding fundamental equations. The surface energy-balance scheme uses established standard parameterizations for radiation as well as for the energy exchange between atmosphere and surface. The schemes are coupled by solving both surface energy balance and subsurface fluxes iteratively in such that consistent surface skin temperature is returned at the interface. COSIPY uses a one-dimensional approach limited to the vertical fluxes of energy and matter but neglects any lateral processes. Accordingly, the model can be easily set up in parallel computational environments for calculating both energy balance and climatic surface mass balance of glacier surfaces based on flexible horizontal grids and with varying temporal resolution. The model is made available on a freely accessible site and can be used for non-profit purposes. Scientists are encouraged to actively participate in the extension and improvement of the model code.


1995 ◽  
Vol 21 ◽  
pp. 231-239 ◽  
Author(s):  
Bernhard Rabus ◽  
Keith Echelmeyer ◽  
Dennis Trabant ◽  
Carl Benson

Detailed surveys of McCall Glacier in the Alaskan Arctic reveal changes from 1972 to 1993. The ice surface dropped everywhere, by amounts ranging from about 3 m in the highest cirques tq more than 42 m near the present terminus. The total volume loss was 3.5+ 0.2 x 10' m(, resulting in an average mass balance of 0.33 + 0.01 in a . l he terminus has retreated by about 285 m at a rale of 12_.5 ma \ Results from photogrammetry for an earlier period, 1958-71, were I.16x 10'm3 and 0.13 ma for volume change and mass balance, respectively; the mean terminus retreat rate was then 5.7 m a . The changes have to be seen in the context of McCall Glacier’s low mass-exchange rate; annual accumulation and ablation, averaged over the years 1969 72 were only +0.16 and 0.3 m a '. Cross-profiles in the ablation area, surveyed at intervals of a few years, show an increased drop rate since the late 1970s. 7 he volume-ehange data suggest a climate warming in the early 1970s. Enhanced thinning of the lower ablation region and accelerated terminus retreat seem to lag this climate change by not more than 10 years, This indicates a reaction time of McCall Glacier that is considerably shorter than its theoretic response time of about 50 70 years.


1986 ◽  
Vol 32 (111) ◽  
pp. 208-218
Author(s):  
Robert J. Rogerson

AbstractThe net mass balance of four small cirque glaciers (0.7–1.4 km2) in the Torngat Mountains of northern Labrador was measured for 1981–84, allowing three complete mass-balance years to be calculated. The two largest glaciers experienced positive mass-balance conditions in 1982 while all the glaciers were negative in 1983. The temporal pattern relates directly to general climatic conditions, in particular winter snowfall. Spatial variations of mass balance on the glaciers are the result of several factors including altitude, extent of supraglacial debris cover, slope, proximity to side and backwalls of the enclosing cirque, and the height of the backwall above the ice surface. Abraham Glacier, the smallest studied and with consistently the largest negative mass balance (–1.28 m in 1983), re-advanced an average of 1.2 m each year between 1981 and 1984. Mean equilibrium-line altitude (ELA) for the four glaciers is 1050 m, varying substantially from one glacier to another (+240 to –140 m) and from year to year (+60 to –30 m).


1979 ◽  
Vol 22 (86) ◽  
pp. 53-65 ◽  
Author(s):  
Paul A. Mayewski ◽  
John W. Attig ◽  
David J. Drewry

AbstractRennick Glacier is one of the major ice drainages in northern Victoria Land. Unlike glaciers farther south along the Transantarctic Mountains, Rennick Glacier does not drain into the Ross Ice Shelf but flows directly into a seasonally ice-covered ocean. Therefore, current fluctuations of this glacier are unhampered by the dampening effects of the Ross Ice Shelf. The primary controls on the activity of this glacier and others in this region are mass balance and sea-level.Two major glacial events are recorded in the upper Rennick Glacier region. The location of erratics and glacially scoured features suggest that during the oldest or Evans glaciation ice covered all but the highest peaks in the region. Following this glaciation a re-advance produced the Rennick glaciation. Drift produced during this glaciation has a surface cover of unweathered clasts and is commonly found in the form of recessional moraines with associated ice-marginal lakes. Rennick Glacier is currently in a recessional phase of the Rennick glaciation. The phase is characterized by physical re-adjustments of local ice masses including progressive inland migration of the Rennick Glacier grounding line. To date the grounding line has migrated up to the mid-point of the glacier. This trend may be expected to continue.


Sign in / Sign up

Export Citation Format

Share Document