scholarly journals Research Progress of Initial Mechanism on Debris Flow and Related Discrimination Methods: A Review

2021 ◽  
Vol 9 ◽  
Author(s):  
Jun Du ◽  
Zhong-jie Fan ◽  
Wen-tao Xu ◽  
Lin-yao Dong

The initial of debris flow can be classified into two types based on their triggering positions, that is, debris flow from slope and debris flow from gully or channel. For the former, great progress has been achieved on the mechanisms of soil failure and liquefaction. The framework established by a series of theories or laws, such as the Mohr–Coulomb criteria, the unsaturated soil mechanics, and the critical state of soil mass, has been used widely in industry and research. However, the details and discrimination basis for the transformation process from landslide into debris flow still need to be further clarified. Relatively, debris flow from gully or channel is more complex due to its various mass sources and the diversity of processes. Nevertheless, through a great number of case studies and experimental statistics, people have gradually recognized the influential rule and critical condition of factors from landform, hydrology, and other aspects on debris flow initiation. Furthermore, based on the theories of granular flow, continuum mechanics, and rheological law, some typical event-based scenarios can also be reproduced by different single-/two-phase depth integral/average numerical models. However, some key knowledge on mechanism and application level is still insufficient, such as the erosion and entrainment mechanism of materials from different sources, the boundary tractions and materials exchange, as well as the selection of prediction indicators. Three current discriminated methodologies for debris flow initiation, that is, the safety factor method, the rainfall indicator method, and the comprehensive assessment method, were summarized in this article. Considering the technical limitation of each methodology, it is believed that the establishment or improvement of a unified, stable, and open-access database system for event registration and query, as well as the development of large-scale and high-precision rainfall monitoring, is still regarded as the important aspect of debris flow prevention in the future. In addition, as an economic and efficiency means for obtaining information on potential threats and real-time hazard messages, the multielement method for debris flow is recommended as a long-term reference.

2021 ◽  
pp. 204141962110595
Author(s):  
Hiroshi Kokuryo ◽  
Toshiyuki Horiguchi ◽  
Nobutaka Ishikawa

Recently, steel pipe open type protective structures (steel open dams) have been damaged because of large-scale debris flow resulting from torrential rainfall based on abnormal climate. This article proposes a safety assessment method for the load-carrying capacity of a steel open dam against large-scale debris flow load (level II load) using the energy constant law. First, the safety assessment method of steel open dams is proposed that the ultimate strength must be larger than the required strength against the level II load, which is determined by using the energy constant law. Second, the load-carrying capacities of three types of steel open dams with different structural shapes against the front and eccentric debris flow loadings are investigated by a push-over analysis. Finally, the safety assessments on load-carrying capacities against the front and eccentric debris flow loading are confirmed and the strength reduction by the eccentric loading is examined for three steel open dams.


2012 ◽  
Vol 76 (8) ◽  
pp. 3303-3318 ◽  
Author(s):  
J. F. Harrington ◽  
R. de la Vaissière ◽  
D. J. Noy ◽  
R. J. Cuss ◽  
J. Talandier

AbstractTo understand the fate and impact of gas produced within a repository for radioactive waste, a series of laboratory and field scale experiments have been performed on the Callovo-Oxfordian claystone (COx), the proposed host rock for the French repository. Results show the movement of gas is through a localized network of pathways, whose properties vary temporarily and spatially within the claystone. Significant evidence exists from detailed laboratory studies for the movement of gas along highly unstable pathways, whose aperture and geometry vary as a function of local stress, gas and porewater pressures. The coupling of these parameters results in the development of significant time-dependent effects, impacting on all aspects of COx behaviour, from gas breakthrough time, to the control of deformation processes. Variations in gas entry, breakthrough and steady-state pressures are indicative of microstructural heterogeneity which exerts an important control on the movement of gas. The localization of gas flow is also evident in preliminary results from the large scale gas injection test (PGZ) where gas flow is initially focussed within the excavation damaged zone (EDZ), which acts as a preferential pathway for gas. Numerical models based on conventional two-phase flow theory are unable to adequately describe the detailed observations from laboratory tests.


Landslides ◽  
2021 ◽  
Author(s):  
Arash Maghsoudloo ◽  
Amin Askarinejad ◽  
Richard R. de Jager ◽  
Frans Molenkamp ◽  
Michael A. Hicks

AbstractPlanning a monitoring campaign for a natural submarine slope prone to static liquefaction is a challenging task due to the sudden nature of flow slides. Therefore, gaining a better insight by monitoring the changes in pore pressure and acceleration of the soil mass, prior to and at the onset of static liquefaction, of submerged model slopes in the laboratory, helps in quantifying the minimum required triggering levels and ultimately the development of effective margins of safety for this specific failure mechanism. This study presents a set of physical model tests of submarine flow slides in the large-scale GeoTank (GT) of Delft University of Technology, in which a tilting mechanism was employed to trigger static liquefaction in loosely packed sand layers. Novel sensors were developed to locally monitor the hydro-mechanical soil responses acting as precursors of the onset of instability. The measurements indicated that soil instability can initiate at overly gentle slope angles (6–10°) and generate significant excess pore water pressures that intensify the deformations to form a flow slide. Moreover, it was observed that the onset of instability and its propagation are highly dependent on the rate of shear stress change and the state of the soil. The obtained data can be used for the future validation of numerical models for submarine flow slides.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3808 ◽  
Author(s):  
Blazej Podlesny ◽  
Bogumila Kumanek ◽  
Angana Borah ◽  
Ryohei Yamaguchi ◽  
Tomohiro Shiraki ◽  
...  

Single-walled carbon nanotubes (SWCNTs) remain one of the most promising materials of our times. One of the goals is to implement semiconducting and metallic SWCNTs in photonics and microelectronics, respectively. In this work, we demonstrated how such materials could be obtained from the parent material by using the aqueous two-phase extraction method (ATPE) at a large scale. We also developed a dedicated process on how to harvest the SWCNTs from the polymer matrices used to form the biphasic system. The technique is beneficial as it isolates SWCNTs with high purity while simultaneously maintaining their surface intact. To validate the utility of the metallic and semiconducting SWCNTs obtained this way, we transformed them into thin free-standing films and characterized their thermoelectric properties.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 176
Author(s):  
Iñigo Aramendia ◽  
Unai Fernandez-Gamiz ◽  
Adrian Martinez-San-Vicente ◽  
Ekaitz Zulueta ◽  
Jose Manuel Lopez-Guede

Large-scale energy storage systems (ESS) are nowadays growing in popularity due to the increase in the energy production by renewable energy sources, which in general have a random intermittent nature. Currently, several redox flow batteries have been presented as an alternative of the classical ESS; the scalability, design flexibility and long life cycle of the vanadium redox flow battery (VRFB) have made it to stand out. In a VRFB cell, which consists of two electrodes and an ion exchange membrane, the electrolyte flows through the electrodes where the electrochemical reactions take place. Computational Fluid Dynamics (CFD) simulations are a very powerful tool to develop feasible numerical models to enhance the performance and lifetime of VRFBs. This review aims to present and discuss the numerical models developed in this field and, particularly, to analyze different types of flow fields and patterns that can be found in the literature. The numerical studies presented in this review are a helpful tool to evaluate several key parameters important to optimize the energy systems based on redox flow technologies.


2021 ◽  
Vol 9 (6) ◽  
pp. 635
Author(s):  
Hyeok Jin ◽  
Kideok Do ◽  
Sungwon Shin ◽  
Daniel Cox

Coastal dunes are important morphological features for both ecosystems and coastal hazard mitigation. Because understanding and predicting dune erosion phenomena is very important, various numerical models have been developed to improve the accuracy. In the present study, a process-based model (XBeachX) was tested and calibrated to improve the accuracy of the simulation of dune erosion from a storm event by adjusting the coefficients in the model and comparing it with the large-scale experimental data. The breaker slope coefficient was calibrated to predict cross-shore wave transformation more accurately. To improve the prediction of the dune erosion profile, the coefficients related to skewness and asymmetry were adjusted. Moreover, the bermslope coefficient was calibrated to improve the simulation performance of the bermslope near the dune face. Model performance was assessed based on the model-data comparisons. The calibrated XBeachX successfully predicted wave transformation and dune erosion phenomena. In addition, the results obtained from other two similar experiments on dune erosion with the same calibrated set matched well with the observed wave and profile data. However, the prediction of underwater sand bar evolution remains a challenge.


Author(s):  
Stefan Puttinger ◽  
Mahdi Saeedipour

AbstractThis paper presents an experimental investigation on the interactions of a deflected submerged jet into a liquid pool with its above interface in the absence and presence of an additional lighter liquid. Whereas the former is a free surface flow, the latter mimics a situation of two stratified liquids where the liquid-liquid interface is disturbed by large-scale motions in the liquid pool. Such configurations are encountered in various industrial applications and, in most cases, it is of major interest to avoid the entrainment of droplets from the lighter liquid into the main flow. Therefore, it is important to understand the fluid dynamics in such configurations and to analyze the differences between the cases with and without the additional liquid layer. To study this problem, we applied time-resolved particle image velocimetry experiments with high spatial resolution. A detailed data analysis of a small layer beneath the interface shows that although the presence of an additional liquid layer stabilizes the oscillations of the submerged jet significantly, the amount of kinetic energy, enstrophy, and velocity fluctuations concentrated in the proximity of the interface is higher when the oil layer is present. In addition, we analyze the energy distribution across the eigenmodes of a proper orthogonal distribution and the distribution of strain and vortex dominated regions. As the main objective of this study, these high-resolution time-resolved experimental data provide a validation platform for the development of new models in the context of the volume of fluid-based large eddy simulation of turbulent two-phase flows.


Sign in / Sign up

Export Citation Format

Share Document