scholarly journals Evaluation Method for Thixotropy of Clay Subjected to Unconfined Compressive Test

2021 ◽  
Vol 9 ◽  
Author(s):  
Bin Tang ◽  
Biaohe Zhou ◽  
Liang Xie ◽  
Jianfeng Yin

Thixotropy is a hot topic in the field of rheology of dispersed systems. Studying the quantitative index and evaluation method for thixotropy of clay is of great significance to evaluate the safety of foundation under long-term load. To explore the index system and classification methods for the thixotropy of clay, unconfined compressive strength tests were carried out on three groups of undisturbed soil and remolded soil that were cured at different times after remodeling of the Zhanjiang Formation in China to obtain the unconfined compressive strength values of the samples and establish the relationship between unconfined compressive strength and curing time of the remodeled soil. The concept of thixotropic sensitivity is introduced to reflect the relationship between thixotropy and structure. According to the relationship between thixotropy sensitivity and curing time and its logarithmic value, two indexes of structural recovery coefficient K and structural recovery index Ke were established to evaluate the thixotropy of structural clay in the Zhanjiang Formation. Following the structural classification method of soil, the boundary values of structural recovery coefficients KI and KII are calculated to classify the thixotropy of soil. When the value of K is less than that of KI, the thixotropy of soil is weak. When the value of K is greater than that of K but less than that of KII, the thixotropy of soil is moderate. When the value of K is greater than that of KII, the thixotropy of soil is strong. The method is used to discuss the thixotropy of soil in the literature, and the rationality of the method is verified. Results show that this method can be used to preliminary classify the thixotropy of soil.

2005 ◽  
Vol 3 (2) ◽  
pp. 116-126 ◽  
Author(s):  
Woo‐Sik Kim ◽  
Nguyen Minh Tam ◽  
Du‐Hwoe Jung

This paper describes the effect of factors on the strength characteristics of cement treated clay from laboratory tests performed on cement mixed clay specimens. It is considered that several factors such as soil type, sample preparing method, quantity of binder, curing time, etc. can have an effect on strength characteristics of cement stabilized clay. A series of unconfined compression tests have been performed on samples prepared with different conditions. The results indicated that soil type, mixing method, curing time, dry weight ratio of cement to clay (Aw), and water‐clay to cement (wc/c) ratio were main factors which can have an influence on unconfined compressive strength, modulus of elasticity, and failure strain of cement stabilized clay. Unconfined compressive strength of soil‐cement samples prepared from dry mixing method was higher than those prepared from wet mixing method.


2020 ◽  
Vol 998 ◽  
pp. 323-328
Author(s):  
Achmad Bakri Muhiddin ◽  
Marthen M. Tangkeallo

In remote areas, most roads still use pavements that are very sensitive to climate change, especially those using clay pavements with high plasticity. In addition to the issue of cost, the difficulty of obtaining a proper source of material is another problem that has led to soaring prices for materials. In this regard, a study was conducted using local materials, namely zeolite as a stabilizing material added with waterglass as activating agent. The research began with samples of laterite soil and natural zeolite for XRD test (microstructure testing), and then testing for laterite soil’s index properties and engineering properties, namely Unconfined Compressive Strength and CBR value. The purpose of the test is to determine the correlation between the Unconfined Compressive Strength (UCS) and the soil bearing capacity (CBR) caused by adding zeolite as stabilizer material and waterglass as activator with increasing curing time. Laterite soils contain a brownish red iron oxide. The stabilizing material zeolite contains a crystalline mineral of alumina silicate SiO2. While waterglass composed of sodium meta silicate. Stabilization carried out by mixing 4%, 8%, 12%, 16%, and 20% of zeolite with addition of 2% waterglass, percentage was measured based on soil dry weight. Specimens were tested at curing time of 0, 7, 14, and 28 days. The test result shows increasing UCS and CBR values with increasing percentage of zeolite. At mix of 20% zeolite and 2% waterglass, the unconfined compressive strength reaches 23.54 kg/cm2 with CBR value 58% at 28 days of curing time.


2019 ◽  
Vol 814 ◽  
pp. 399-403
Author(s):  
Anuchit Uchaipichat

This paper presents the relationship between the dynamic cone penetration (DCP) test results and the unconfined compressive strength of lateritic cemented soils. A series of DCP tests and unconfined compressive strength was performed on lateritic cemented soil. The soils sample used in this study was lateritic soil. The test results for the DCP tests are presented in terms of penetration index. It can be observed that the penetration index decreased with increasing curing period and cement content. Moreover, the unconfined compressive strength of cemented soils increased with curing period and cement content. The relationship between unconfined compressive strength and penetration index is presented. A unique relationship for unconfined compressive strength can be obtained.


2011 ◽  
Vol 94-96 ◽  
pp. 1921-1929 ◽  
Author(s):  
Zhi Bin Liu ◽  
Xin Ma ◽  
Wen Long Dai

Due to release and accumulation of industrial contaminants in natural soil in some regions, and the long-term interaction between leachate and clay which is adopted as isolation material of contaminants, the engineering property variation of clay soils after having been polluted by heavy metal ions gradually has drawn more and more attention of environmental geotechnical engineers. With relatively high chemical stability and low expansion coefficient kaolinite is widely distributed and usually used in engineering practice. In this research, Pb, Zn, and Cu-contaminated kaolinite specimens of controlled initial dry density and water content were manually prepared through static compaction. Then expansion capacity, unconfined compression, electrical resistivity and one-dimensional consolidation tests were conducted. It is found that the expansion capacity of contaminated kaolinite is influenced by the type and concentration of heavy metal ion. The unconfined compressive strength of heavy metal-contaminated kaolinite is decreased in a short period, but it may increase in a long term. Unconfined compressive strength of the same type of heavy metal-contaminated kaolinite will change with the contamination concentration. The electrical resistivity of kaolinite would be decreased when contaminated by heavy metal ions. The higher the contamination concentration is, the lower the electrical resistivity will be. All the compression indexes of heavy metal-contaminated kaolinite become lower than that of the clean kaolinite, and it also depends on both the type of heavy metal and contamination concentration. For the three types of heavy metal ions, Pb has the greatest influence on the engineering property of kaolinite, while the effects of Zn and Cu are quite similar.


2015 ◽  
Vol 72 (3) ◽  
Author(s):  
Khitam Abdul Hussein Saeed ◽  
Khairul Anuar Kassim ◽  
Nor Zurairahetty Mohd Yunus ◽  
Hadi Nur

Lime stabilization is one of the techniques used to improve the mechanical properties, particularly the strength of soft clay soil. However the effectiveness of lime at long term is still ambiguous. This paper aims to determine the suitability of lime for stabilizing tropical kaolin clay soils, and to assess typical changes in soil structure due to mineralogical influences at different during period and lime content in both short and long term. The microstructure characterizations have been investigated using x-ray diffraction (XRD), and Field Emission Scanning Electron Microscopy (FESEM). Furthermore, to illustrate the effect of lime on the strength, series of laboratory tests were carried out by unconfined compressive strength. The results indicated that the addition of lime resulted in an improvement in compaction properties. In addition, the unconfined compressive strength (UCS) of stabilized clay has increased with the addition of lime. The influence of the time factor on the development of strength lime treated samples was equally proportional with the lime content factor. The formation of calcium aluminate silicate hydrate (CASH) was observed from the XRD test after 200 days, and the presence of the cementious products were further verified in FESEM analysis. It is therefore, proved the effectiveness of lime to stabilize kaolin clay in long term duration.


2017 ◽  
Vol 893 ◽  
pp. 389-394
Author(s):  
Zai Bo Li ◽  
Tu Sheng He ◽  
Xu Guang Zhao ◽  
San Yin Zhao

In order to establish a rapid evaluation method of steel slag cementitious activity, extraction test of steel slag in EDTA-NaOH solution have been investigated and the relationship between extraction characteristics and cementitious activity expressed as mortar strength has been analyzed. Results show that the linear relationship between the quantity extracted from steel slag and the mortar compressive strength is significant. According to the analysis results of mineral composition and microscopic morphologies, EDTA-NaOH solution can selectively extract the silicate and aluminate minerals of steel slag, which could be used as a rapid evaluation method of steel slag cementitious activity.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Panbarasi Govindasamy ◽  
Mohd Raihan Taha ◽  
Jamal Alsharef ◽  
Kowstubaa Ramalingam

This paper presents the improvement of the unconfined compressive strength (UCS) of soil by mixing different percentages of nanolime and 5% lime with soil. The UCS of treated soil increased significantly over curing time with increasing percentage of nanolime. The optimum results were reached at only 0.5% nanolime admixtures which were much higher than 5% lime admixture. This may be due to higher ability of nanolime to flocculate and agglomerate the soil particles compared with the lime. In addition, the lime could fill only the micropores while nanolime could fill the micro- and nanopores as well. The strength gain is inversely proportional to the remolded moisture content and curing period. However, when the content of nanolime used is larger than 0.5%, nanolime particles are not uniformly dispersed. Therefore, a weak area in the form of voids is created, consequently the homogeneous hydrated microstructure cannot be formed, and finally the strength will decrease.


2013 ◽  
Vol 438-439 ◽  
pp. 197-201
Author(s):  
Xian Hua Yao ◽  
Peng Li ◽  
Jun Feng Guan

Based on the generalization and analysis of laboratory experimental results on mix ratio, the effects of various factors such as cement content, water-cement ratio, curing time, curing conditions and types of cement on the mechanical properties of unconfined compressive strength of cement soil are presented. Results show that the unconfined compressive strength of cement soil increases with the growing curing time, and it is greatly affected by the cement content, water-cement ratio, cement types and curing time, while the effect of curing conditions is weak with a cement content of more than 10%. Moreover, the stress-strain of the cement soil responds with the cement content and curing time, increasing curing time and cement content makes the cement soil to be harder and brittle, and leads to a larger Young's modulus.


Sign in / Sign up

Export Citation Format

Share Document