scholarly journals Efficient Seismic Stability Analysis of Embankment Slopes Subjected to Water Level Changes Using Gradient Boosting Algorithms

2021 ◽  
Vol 9 ◽  
Author(s):  
Luqi Wang ◽  
Jiahao Wu ◽  
Wengang Zhang ◽  
Lin Wang ◽  
Wei Cui

Embankments are widespread throughout the world and their safety under seismic conditions is a primary concern in the geotechnical engineering community since the failure events may lead to disastrous consequences. This study proposes an efficient seismic slope stability analysis approach by introducing advanced gradient boosting algorithms, namely Categorical Boosting (CatBoost), Light Gradient Boosting Machine (LightGBM), and Extreme Gradient Boosting (XGBoost). A database consisting of 600 datasets is prepared for model calibration and evaluation, where the factor of safety (FS) is regarded as the output and four influential factors are selected as the inputs. For each dataset, the FS corresponding to the four inputs is evaluated using the commercial geotechnical software of Slide2. As an illustration, the proposed approach is applied to the seismic stability analysis of a hypothetical embankment example subjected to water level changes. For comparison, the predictive performance of CatBoost, LightGBM, and XGBoost is investigated. Moreover, the Shapley additive explanations (SHAP) method is used in this study to explore the relative importance of the four features. Results show that all the three gradient boosting algorithms (i.e., CatBoost, LightGBM, and XGBoost) perform well in the prediction of FS for both the training dataset and testing dataset. Among the four influencing factors, the friction angle φ is the most important feature variable, followed by horizontal seismic coefficient Kh, cohesion c, and saturated permeability ks.

Author(s):  
Saifur Rahman ◽  
Muhammad Irfan ◽  
Mohsin Raza ◽  
Khawaja Moyeezullah Ghori ◽  
Shumayla Yaqoob ◽  
...  

Physical activity is essential for physical and mental health, and its absence is highly associated with severe health conditions and disorders. Therefore, tracking activities of daily living can help promote quality of life. Wearable sensors in this regard can provide a reliable and economical means of tracking such activities, and such sensors are readily available in smartphones and watches. This study is the first of its kind to develop a wearable sensor-based physical activity classification system using a special class of supervised machine learning approaches called boosting algorithms. The study presents the performance analysis of several boosting algorithms (extreme gradient boosting—XGB, light gradient boosting machine—LGBM, gradient boosting—GB, cat boosting—CB and AdaBoost) in a fair and unbiased performance way using uniform dataset, feature set, feature selection method, performance metric and cross-validation techniques. The study utilizes the Smartphone-based dataset of thirty individuals. The results showed that the proposed method could accurately classify the activities of daily living with very high performance (above 90%). These findings suggest the strength of the proposed system in classifying activity of daily living using only the smartphone sensor’s data and can assist in reducing the physical inactivity patterns to promote a healthier lifestyle and wellbeing.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jong Ho Kim ◽  
Haewon Kim ◽  
Ji Su Jang ◽  
Sung Mi Hwang ◽  
So Young Lim ◽  
...  

Abstract Background Predicting difficult airway is challengeable in patients with limited airway evaluation. The aim of this study is to develop and validate a model that predicts difficult laryngoscopy by machine learning of neck circumference and thyromental height as predictors that can be used even for patients with limited airway evaluation. Methods Variables for prediction of difficulty laryngoscopy included age, sex, height, weight, body mass index, neck circumference, and thyromental distance. Difficult laryngoscopy was defined as Grade 3 and 4 by the Cormack-Lehane classification. The preanesthesia and anesthesia data of 1677 patients who had undergone general anesthesia at a single center were collected. The data set was randomly stratified into a training set (80%) and a test set (20%), with equal distribution of difficulty laryngoscopy. The training data sets were trained with five algorithms (logistic regression, multilayer perceptron, random forest, extreme gradient boosting, and light gradient boosting machine). The prediction models were validated through a test set. Results The model’s performance using random forest was best (area under receiver operating characteristic curve = 0.79 [95% confidence interval: 0.72–0.86], area under precision-recall curve = 0.32 [95% confidence interval: 0.27–0.37]). Conclusions Machine learning can predict difficult laryngoscopy through a combination of several predictors including neck circumference and thyromental height. The performance of the model can be improved with more data, a new variable and combination of models.


Risks ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 202
Author(s):  
Ge Gao ◽  
Hongxin Wang ◽  
Pengbin Gao

In China, SMEs are facing financing difficulties, and commercial banks and financial institutions are the main financing channels for SMEs. Thus, a reasonable and efficient credit risk assessment system is important for credit markets. Based on traditional statistical methods and AI technology, a soft voting fusion model, which incorporates logistic regression, support vector machine (SVM), random forest (RF), eXtreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM), is constructed to improve the predictive accuracy of SMEs’ credit risk. To verify the feasibility and effectiveness of the proposed model, we use data from 123 SMEs nationwide that worked with a Chinese bank from 2016 to 2020, including financial information and default records. The results show that the accuracy of the soft voting fusion model is higher than that of a single machine learning (ML) algorithm, which provides a theoretical basis for the government to control credit risk in the future and offers important references for banks to make credit decisions.


2021 ◽  
Author(s):  
Seong Hwan Kim ◽  
Eun-Tae Jeon ◽  
Sungwook Yu ◽  
Kyungmi O ◽  
Chi Kyung Kim ◽  
...  

Abstract We aimed to develop a novel prediction model for early neurological deterioration (END) based on an interpretable machine learning (ML) algorithm for atrial fibrillation (AF)-related stroke and to evaluate the prediction accuracy and feature importance of ML models. Data from multi-center prospective stroke registries in South Korea were collected. After stepwise data preprocessing, we utilized logistic regression, support vector machine, extreme gradient boosting, light gradient boosting machine (LightGBM), and multilayer perceptron models. We used the Shapley additive explanations (SHAP) method to evaluate feature importance. Of the 3,623 stroke patients, the 2,363 who had arrived at the hospital within 24 hours of symptom onset and had available information regarding END were included. Of these, 318 (13.5%) had END. The LightGBM model showed the highest area under the receiver operating characteristic curve (0.778, 95% CI, 0.726 - 0.830). The feature importance analysis revealed that fasting glucose level and the National Institute of Health Stroke Scale score were the most influential factors. Among ML algorithms, the LightGBM model was particularly useful for predicting END, as it revealed new and diverse predictors. Additionally, the SHAP method can be adjusted to individualize the features’ effects on the predictive power of the model.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seyed Ali Madani ◽  
Mohammad-Reza Mohammadi ◽  
Saeid Atashrouz ◽  
Ali Abedi ◽  
Abdolhossein Hemmati-Sarapardeh ◽  
...  

AbstractAccurate prediction of the solubility of gases in hydrocarbons is a crucial factor in designing enhanced oil recovery (EOR) operations by gas injection as well as separation, and chemical reaction processes in a petroleum refinery. In this work, nitrogen (N2) solubility in normal alkanes as the major constituents of crude oil was modeled using five representative machine learning (ML) models namely gradient boosting with categorical features support (CatBoost), random forest, light gradient boosting machine (LightGBM), k-nearest neighbors (k-NN), and extreme gradient boosting (XGBoost). A large solubility databank containing 1982 data points was utilized to establish the models for predicting N2 solubility in normal alkanes as a function of pressure, temperature, and molecular weight of normal alkanes over broad ranges of operating pressure (0.0212–69.12 MPa) and temperature (91–703 K). The molecular weight range of normal alkanes was from 16 to 507 g/mol. Also, five equations of state (EOSs) including Redlich–Kwong (RK), Soave–Redlich–Kwong (SRK), Zudkevitch–Joffe (ZJ), Peng–Robinson (PR), and perturbed-chain statistical associating fluid theory (PC-SAFT) were used comparatively with the ML models to estimate N2 solubility in normal alkanes. Results revealed that the CatBoost model is the most precise model in this work with a root mean square error of 0.0147 and coefficient of determination of 0.9943. ZJ EOS also provided the best estimates for the N2 solubility in normal alkanes among the EOSs. Lastly, the results of relevancy factor analysis indicated that pressure has the greatest influence on N2 solubility in normal alkanes and the N2 solubility increases with increasing the molecular weight of normal alkanes.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1550
Author(s):  
Mohamed Zakaria Gouda ◽  
El Mehdi Nagihi ◽  
Lotfi Khiari ◽  
Jacques Gallichand ◽  
Mahmoud Ismail

Soil texture is a key soil property influencing many agronomic practices including fertilization and liming. Therefore, an accurate estimation of soil texture is essential for adopting sustainable soil management practices. In this study, we used different machine learning algorithms trained on vis–NIR spectra from existing soil spectral libraries (ICRAF and LUCAS) to predict soil textural fractions (sand–silt–clay %). In addition, we predicted the soil textural groups (G1: Fine, G2: Medium, and G3: Coarse) using routine chemical characteristics as auxiliary. With the ICRAF dataset, multilayer perceptron resulted in good predictions for sand and clay (R2 = 0.78 and 0.85, respectively) and categorical boosting outperformed the other algorithms (random forest, extreme gradient boosting, linear regression) for silt prediction (R2 = 0.81). For the LUCAS dataset, categorical boosting consistently showed a high performance for sand, silt, and clay predictions (R2 = 0.79, 0.76, and 0.85, respectively). Furthermore, the soil texture groups (G1, G2, and G3) were classified using the light gradient boosted machine algorithm with a high accuracy (83% and 84% for ICRAF and LUCAS, respectively). These results, using spectral data, are very promising for rapid diagnosis of soil texture and group in order to adjust agricultural practices.


2021 ◽  
Author(s):  
Bozhi Hu ◽  
Chao Wang ◽  
Kewei Jiang ◽  
Zhanlong Shen ◽  
Xiaodong Yang ◽  
...  

Abstract INTRODUCTION Gastrointestinal stromal tumor (GIST) is the most common gastrointestinal soft tissue tumor. Clinical diagnosis mainly relies on enhanced CT, endoscopy and endoscopic ultrasound (EUS), but the misdiagnosis rate is still high without fine needle aspiration biopsy. We aim to develop a novel diagnostic model by analyzing the preoperative data of the patients. METHODS We used the data of patients who were initially diagnosed as gastric GIST and underwent partial gastrectomy. The patients were randomly divided into training dataset and test dataset at a ratio of 3 to 1. After pre-experimental screening, max depth = 2, eta = 0.1, gamma = 0.5, and nrounds = 200 were defined as the best parameters, and in this way we developed the initial extreme gradient-boosting (XGBoost) model. Based on the importance of the features in the initial model, we improved the model by excluding the hematological features. In this way we obtained the final XGBoost model and underwent validation using the test dataset. RESULTS In the initial XGBoost model, we found that the hematological indicators (including inflammation and nutritional indicators) examined before the surgery had little effect on the outcome, so we subsequently excluded the hematological indicators. Similarly, we also screened the features from enhanced CT and ultrasound gastroscopy, and finally determined the 6 most important predictors for GIST diagnosis, including the ratio of long and short diameter under CT, the CT value of the tumor, the enhancement of the tumor in arterial period and venous period, existence of liquid area and calcific area inside the tumor under EUS. Round or round-like tumors with a CT value of around 30 (25–37) and delayed enhancement, as well as liquid but not calcific area inside the tumor best indicate the diagnosis of GIST. CONCLUSIONS We developed a model to further differential diagnose GIST from other tumors in initially clinical diagnosed gastric GIST patients by analyzing the results of clinical examinations that most patients should have completed before surgical resection.


2020 ◽  
Vol 9 (11) ◽  
pp. 3415
Author(s):  
HyunBum Kim ◽  
Juhyeong Jeon ◽  
Yeon Jae Han ◽  
YoungHoon Joo ◽  
Jonghwan Lee ◽  
...  

Voice changes may be the earliest signs in laryngeal cancer. We investigated whether automated voice signal analysis can be used to distinguish patients with laryngeal cancer from healthy subjects. We extracted features using the software package for speech analysis in phonetics (PRAAT) and calculated the Mel-frequency cepstral coefficients (MFCCs) from voice samples of a vowel sound of /a:/. The proposed method was tested with six algorithms: support vector machine (SVM), extreme gradient boosting (XGBoost), light gradient boosted machine (LGBM), artificial neural network (ANN), one-dimensional convolutional neural network (1D-CNN) and two-dimensional convolutional neural network (2D-CNN). Their performances were evaluated in terms of accuracy, sensitivity, and specificity. The result was compared with human performance. A total of four volunteers, two of whom were trained laryngologists, rated the same files. The 1D-CNN showed the highest accuracy of 85% and sensitivity and sensitivity and specificity levels of 78% and 93%. The two laryngologists achieved accuracy of 69.9% but sensitivity levels of 44%. Automated analysis of voice signals could differentiate subjects with laryngeal cancer from those of healthy subjects with higher diagnostic properties than those performed by the four volunteers.


Sign in / Sign up

Export Citation Format

Share Document