scholarly journals Ghrelin Gene Deletion Alters Pulsatile Growth Hormone Secretion in Adult Female Mice

2021 ◽  
Vol 12 ◽  
Author(s):  
Rim Hassouna ◽  
Gimena Fernandez ◽  
Nicolas Lebrun ◽  
Oriane Fiquet ◽  
Ferdinand Roelfsema ◽  
...  

Using preproghrelin-deficient mice (Ghrl-/-), we previously observed that preproghrelin modulates pulsatile growth hormone (GH) secretion in post-pubertal male mice. However, the role of ghrelin and its derived peptides in the regulation of growth parameters or feeding in females is unknown. We measured pulsatile GH secretion, growth, metabolic parameters and feeding behavior in adult Ghrl-/- and Ghrl+/+ male and female mice. We also assessed GH release from pituitary explants and hypothalamic growth hormone-releasing hormone (GHRH) expression and immunoreactivity. Body weight and body fat mass, linear growth, spontaneous food intake and food intake following a 48-h fast, GH pituitary contents and GH release from pituitary explants ex vivo, fasting glucose and glucose tolerance were not different among adult Ghrl-/- and Ghrl+/+ male or female mice. In vivo, pulsatile GH secretion was decreased, while approximate entropy, that quantified orderliness of secretion, was increased in adult Ghrl-/- females only, defining more irregular GH pattern. The number of neurons immunoreactive for GHRH visualized in the hypothalamic arcuate nucleus was increased in adult Ghrl-/- females, as compared to Ghrl+/+ females, whereas the expression of GHRH was not different amongst groups. Thus, these results point to sex-specific effects of preproghrelin gene deletion on pulsatile GH secretion, but not feeding, growth or metabolic parameters, in adult mice.

Endocrinology ◽  
2007 ◽  
Vol 148 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Rubén Nogueiras ◽  
Paul Pfluger ◽  
Sulay Tovar ◽  
Myrtha Arnold ◽  
Sharon Mitchell ◽  
...  

Ghrelin stimulates food intake and adiposity and thereby increases body weight (BW) in rodents after central as well as peripheral administration. Recently, it was discovered that the gene precursor of ghrelin encoded another secreted and bioactive peptide named obestatin. First reports appeared to demonstrate that this peptide requires an amidation for its biological activity and acts through the orphan receptor, GPR-39. Obestatin was shown to have actions opposite to ghrelin on food intake, BW, and gastric emptying. In the present study, we failed to observe any effect of obestatin on food intake, BW, body composition, energy expenditure, locomotor activity, respiratory quotient, or hypothalamic neuropeptides involved in energy balance regulation. In agreement with the first report, we were unable to find any effect of obestatin on GH secretion in vivo. Moreover, we were unable to find mRNA expression of GPR-39, the putative obestatin receptor, in the hypothalamus of rats. Therefore, the results presented here do not support a role of the obestatin/GPR-39 system in the regulation of energy balance.


Endocrinology ◽  
2007 ◽  
Vol 148 (4) ◽  
pp. 1648-1653 ◽  
Author(s):  
Philippe Zizzari ◽  
Romaine Longchamps ◽  
Jacques Epelbaum ◽  
Marie Thérèse Bluet-Pajot

Administration of ghrelin, an endogenous ligand for the GH secretagogue receptor 1a (GHSR 1a), induces potent stimulating effects on GH secretion and food intake. However, more than 7 yr after its discovery, the role of endogenous ghrelin remains elusive. Recently, a second peptide, obestatin, also generated from proteolytic cleavage of preproghrelin has been identified. This peptide inhibits food intake and gastrointestinal motility but does not modify in vitro GH release from pituitary cells. In this study, we have reinvestigated obestatin functions by measuring plasma ghrelin and obestatin levels in a period of spontaneous feeding in ad libitum-fed and 24-h fasted mice. Whereas fasting resulted in elevated ghrelin levels, obestatin levels were significantly reduced. Exogenous obestatin per se did not modify food intake in fasted and fed mice. However, it inhibited ghrelin orexigenic effect that were evident in fed mice only. The effects of obestatin on GH secretion were monitored in superfused pituitary explants and in freely moving rats. Obestatin was only effective in vivo to inhibit ghrelin stimulation of GH levels. Finally, the relationship between octanoylated ghrelin, obestatin, and GH secretions was evaluated by iterative blood sampling every 20 min during 6 h in freely moving adult male rats. The half-life of exogenous obestatin (10 μg iv) in plasma was about 22 min. Plasma obestatin levels exhibited an ultradian pulsatility with a frequency slightly lower than octanoylated ghrelin and GH. Ghrelin and obestatin levels were not strictly correlated. In conclusion, these results show that obestatin, like ghrelin, is secreted in a pulsatile manner and that in some conditions; obestatin can modulate exogenous ghrelin action. It remains to be determined whether obestatin modulates endogenous ghrelin actions.


1984 ◽  
Vol 4 (12) ◽  
pp. 995-1000 ◽  
Author(s):  
Janet E. Merritt ◽  
Pauline R. M. Dobson ◽  
Richard J. H. Wojcikiewicz ◽  
John G. Baird ◽  
Barry L. Brown

A possible role for Ca 2+ and calmodulin in the action of growth-hormone-releasing factor (GHRF) was investigated. Low extracellular Ca2+ (<100 μM), methoxyverapamil, flunarizine, cinnarizine, and Co2+ decreased both basal and GHRF-stimulated growth-hormone secretion, but did not totally inhibit GHRF-stimulation secretion. A calmodulin antagonist, W7, abolished GHRF-stimulated GH secretion, with no effect on basal secretion. It is suggested that GHRF may act primarily by elevating cellular cyclic AMP, which may then modulate calcium mobilization or flux; the increased intracellular Ca2+ concentrations may then activate calmodulin.


1995 ◽  
Vol 144 (1) ◽  
pp. 83-90 ◽  
Author(s):  
E Magnan ◽  
L Mazzocchi ◽  
M Cataldi ◽  
V Guillaume ◽  
A Dutour ◽  
...  

Abstract The physiological role of endogenous circulating GHreleasing hormone (GHRH) and somatostatin (SRIH) on spontaneous pulsatile and neostigmine-induced secretion of GH was investigated in adult rams actively immunized against each neuropeptide. All animals developed antibodies at concentrations sufficient for immunoneutralization of GHRH and SRIH levels in hypophysial portal blood. In the anti GHRH group, plasma GH levels were very low; the amplitude of GH pulses was strikingly reduced, although their number was unchanged. No stimulation of GH release was observed after neostigmine administration. The reduction of GH secretion was associated with a decreased body weight and a significant reduction in plasma IGF-I concentration. In the antiSRIH group, no changes in basal and pulsatile GH secretion or the GH response to neostigmine were observed as compared to controls. Body weight was not significantly altered and plasma IGF-I levels were reduced in these animals. These results suggest that in sheep, circulating SRIH (in the systemic and hypophysial portal vasculature) does not play a significant role in pulsatile and neostigmine-induced secretion of GH. The mechanisms of its influence on body weight and production of IGF-I remain to be determined. Journal of Endocrinology (1995) 144, 83–90


1980 ◽  
Vol 93 (2) ◽  
pp. 134-138 ◽  
Author(s):  
M. Donnadieu ◽  
R. M. Schimpff ◽  
P. Garnier ◽  
J. L. Chaussain ◽  
J. C. Job

Abstract. Since transferrin (Tf) in vitro has a growth-promoting activity and is associated with NSILA properties, the aim of this work was to study in vivo the relationships between Tf, somatomedin activity (SM), growth hormone (GH) secretion, and height velocity in children. An iv infusion of ornithine hydrochloride was given to 23 controls; the induced rise of GH was accompanied by a simultaneous fall of SM (r = −0.711, P < 0.001) and was preceded by a fall of Tf (r = −0.610, P < 0.01). In 17 obese children SM was within the normal range, when Tf levels were higher and arginineinduced GH peaks lower than in the controls, and a negative correlation was found between Tf basal levels and GH peaks (r = −0.608, P < 0.01). In 9 children with confirmed hypopituitarism the Tf levels were significantly lower than in the controls. In 14 children with confirmed or suspected hypopituitarism a single im injection of hGH (6 mg) failed to induce Tf variations over 24 h. In 39 of these children the height velocity was significantly correlated with Tf basal levels (r = 0.701, P < 0.001). These data suggest that transferrin is involved in growth regulation, and that GH secretion is related to transferrin levels by a feed-back mechanism.


1987 ◽  
Vol 114 (4) ◽  
pp. 465-469 ◽  
Author(s):  
Gian Paolo Ceda ◽  
Robert G. Davis ◽  
Andrew R. Hoffman

Abstract. Glucocorticoids have been shown to have both stimulatory and suppressive effects on GH secretion in vitro and in vivo. In order to study the kinetics of glucocorticoid action on the somatotrope, cultured rat pituitary cells were exposed to dexamethasone for varying periods of time. During short-term incubations (≤ 4 h), dexamethasone inhibited GHRH and forskolin-elicited GH secretion, but during longer incubation periods, the glucocorticoid enhanced both basal and GHRH-stimulated GH release. The inhibitory effect of brief dexamethasone exposure was also seen in cells which previously had been exposed to dexamethasone. In addition, growth hormone secretion from cultured rat and human somatotropinoma cells was inhibited by a brief exposure to dexamethasone. Thus, the nature of glucocorticoid action on the isolated cultured somatotrope is biphasic, with brief exposure inhibiting, and more prolonged exposure stimulating GH secretion.


2011 ◽  
Vol 29 (36) ◽  
pp. 4776-4780 ◽  
Author(s):  
Thomas E. Merchant ◽  
Susan R. Rose ◽  
Christina Bosley ◽  
Shengjie Wu ◽  
Xiaoping Xiong ◽  
...  

Purpose Growth hormone deficiency (GHD) after radiation therapy negatively affects growth and development and quality of life in children with brain tumors. Patients and Materials Between 1997 and 2008, 192 pediatric patients with localized primary brain tumors (ependymoma, n = 88; low-grade glioma, n = 51; craniopharyngioma, n = 28; high-grade glioma, n = 23; and other tumor types, n = 2) underwent provocative testing of GH secretion by using the secretogogues arginine and l-dopa before and after (6, 12, 36, and 60 months) conformal radiation therapy (CRT). A total of 664 arginine/l-dopa test procedures were performed. Results Baseline testing revealed preirradiation GHD in 22.9% of tested patients. On the basis of data from 118 patients, peak GH was modeled as an exponential function of time after CRT and mean radiation dose to the hypothalamus. The average patient was predicted to develop GHD with the following combinations of the time after CRT and mean dose to the hypothalamus: 12 months and more than 60 Gy; 36 months and 25 to 30 Gy; and 60 months and 15 to 20 Gy. A cumulative dose of 16.1 Gy to the hypothalamus would be considered the mean radiation dose required to achieve a 50% risk of GHD at 5 years (TD50/5). Conclusion GH secretion after CRT can be predicted on the basis of dose and time after irradiation in pediatric patients with localized brain tumors. These findings provide an objective radiation dose constraint for the hypothalamus.


2000 ◽  
Vol 25 (2) ◽  
pp. 157-168 ◽  
Author(s):  
M Montero ◽  
L Yon ◽  
S Kikuyama ◽  
S Dufour ◽  
H Vaudry

Growth hormone-releasing hormone (GHRH) and pituitary adenylate cyclase-activating polypeptide (PACAP) belong to the same superfamily of regulatory neuropeptides and have both been characterized on the basis of their hypophysiotropic activities. This review describes the molecular evolution of the GHRH/PACAP gene family from urochordates to mammals and presents the hypothesis that the respective roles of GHRH and PACAP in the control of GH secretion are totally inverted in phylogenetically distant groups of vertebrates. In mammals, GHRH and PACAP originate from distinct precursors whereas, in all submammalian taxa investigated so far, including birds, amphibians and fish, a single precursor encompasses a GHRH-like peptide and PACAP. In mammals, GHRH-containing neurons are confined to the infundibular and dorsomedial nuclei of the hypothalamus while PACAP-producing neurons are widely distributed in hypothalamic and extrahypothalamic areas. In fish, both GHRH- and PACAP-immunoreactive neurons are restricted to the diencephalon and directly innervate the adenohypophysis. In mammals and birds, GHRH plays a predominant role in the control of GH secretion. In amphibians, both GHRH and PACAP are potent stimulators of GH release. In fish, PACAP strongly activates GH release whereas GHRH has little or no effect on GH secretion. The GHRH/PACAP family of peptides thus provides a unique model in which to investigate the structural and functional facets of evolution.


2007 ◽  
Vol 292 (6) ◽  
pp. E1750-E1762 ◽  
Author(s):  
Xinyan Wang ◽  
Mable M. S. Chu ◽  
Anderson O. L. Wong

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a potent growth hormone (GH)-releasing factor in lower vertebrates. However, its functional interactions with other GH regulators have not been fully characterized. In fish models, norepinephrine (NE) inhibits GH release at the pituitary cell level, but its effects on GH synthesis have yet to be determined. We examined adrenergic inhibition of PACAP-induced GH secretion and GH gene expression using grass carp pituitary cells as a cell model. Through activation of pituitary α2-adrenoreceptors, NE or the α2-agonist clonidine reduced both basal and PACAP-induced GH release and GH mRNA expression. In carp pituitary cells, clonidine also suppressed cAMP production and intracellular Ca2+ levels and blocked PACAP induction of these two second messenger signals. In GH3 cells transfected with a reporter carrying the grass carp GH promoter, PACAP stimulation increased GH promoter activity, and this stimulatory effect could be abolished by NE treatment. In parallel experiments, clonidine reduced GH primary transcript and GH promoter activity without affecting GH mRNA stability, and these inhibitory actions were mimicked by inhibiting adenylate cyclase (AC), blocking protein kinase A (PKA), removing extracellular Ca2+ in the culture medium, or inactivating L-type voltage-sensitive Ca2+ channels (VSCC). Since our recent studies have shown that PACAP can induce GH secretion in carp pituitary cells through cAMP/PKA- and Ca2+/calmodulin-dependent mechanisms, these results, taken together, suggest that α2-adrenergic stimulation in the carp pituitary may inhibit PACAP-induced GH release and GH gene transcription by blocking the AC/cAMP/PKA pathway and Ca2+ entry through L-type VSCC.


Sign in / Sign up

Export Citation Format

Share Document