scholarly journals Synergy of Oxygen Plasma and Al2O3 Atomic Layer Deposition on Improved Electrochemical Stability of Activated Carbon-Based Supercapacitor

2021 ◽  
Vol 9 ◽  
Author(s):  
Fuming Zhang ◽  
Guanghui Song ◽  
Dayakar Gandla ◽  
Yair Ein-Eli ◽  
Daniel Q. Tan

As a conventional electrode material of electric double-layer capacitors (EDLC), activated carbon (AC) still faces challenges to exhibit high capacitance. To address this problem, herein, we introduce a combined method of oxygen plasma and Al2O3 tomic layer deposition (ALD) on AC electrodes to reduce the impedance and improve the cycle stability of EDLC. The defect structure can be precisely designed by simply tuning the oxygen-plasma treatment time, thereby affecting the microstructures of AC electrode. Such a tactic permits the first-operated AC electrode with more defects and the ALD passivation of AC resulting in an outstanding rate performance for the device (40.6 F g–1 at 5 mA cm–2, 20.1 Fg–1 at 100 mA cm–2) and cycling stability (∼90% retention after 5,000 cycles). This benefit from the synergistic effect of defects from doped oxygen and stable aluminum oxide layer on the electrode surface. This work delivers a feasible strategy to construct a stable AC material with superior cycling performance for supercapacitor.

2020 ◽  
Vol 299 ◽  
pp. 1058-1063
Author(s):  
Denis Nazarov ◽  
Ilya Mitrofanov ◽  
Maxim Yu. Maximov

Tin oxide is the most promising material for thin film anodes of Li-ion batteries due to its cycling performance and high theoretical capacity. It is assumed that lithium-tin oxide can demonstrate even higher performance. Lithium-silicon-tin oxide nanofilms were prepared by atomic layer deposition (ALD), using the lithium bis (trimethylsilyl) amide (LiHMDS), tetraethyltin (TET) as a metal containing reagents and ozone or water or oxygen plasma as counter-reactants. Monocrystalline silicon (100) and stainless steel (316SS) were used as supports. The thicknesses of the nanofilms were measured by spectral ellipsometry (SE) and scanning electron microscopy (SEM). It was found that oxygen plasma is the most optimal ALD counter-reactant. The composition and structure were studied by Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS), X-ray Photoelectron Spectroscopy (XPS) and X-ray diffraction (XRD). The nanofilms contain silicon as impurity, whose source is the ALD precursor (LiHMDS). The nanofilms deposited on stainless steel have shown the high Coulombic efficiency (99.1-99.8%) and cycling performance at a relatively high voltage (0.01 to 2.0V).


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4188
Author(s):  
Chongrui Wu ◽  
Fuming Zhang ◽  
Xiangshang Xiao ◽  
Junyan Chen ◽  
Junqi Sun ◽  
...  

Fabricating electrical double-layer capacitors (EDLCs) with high energy density for various applications has been of great interest in recent years. However, activated carbon (AC) electrodes are restricted to a lower operating voltage because they suffer from instability above a threshold potential window. Thus, they are limited in their energy storage. The deposition of inorganic compounds’ atomic layer deposition (ALD) aiming to enhance cycling performance of supercapacitors and battery electrodes can be applied to the AC electrode materials. Here, we report on the investigation of zinc oxide (ZnO) coating strategy in terms of different pulse times of precursors, ALD cycles, and deposition temperatures to ensure high electrical conductivity and capacitance retention without blocking the micropores of the AC electrode. Crystalline ZnO phase with its optimal forming condition is obtained preferably using a longer precursor pulse time. Supercapacitors comprising AC electrodes coated with 20 cycles of ALD ZnO at 70 °C and operated in TEABF4/acetonitrile organic electrolyte show a specific capacitance of 23.13 F g−1 at 5 mA cm−2 and enhanced capacitance retention at 3.2 V, which well exceeds the normal working voltage of a commercial EDLC product (2.7 V). This work delivers an additional feasible approach of using ZnO ALD modification of AC materials, enhancing and promoting stable EDLC cells under high working voltages.


2013 ◽  
Vol 781-784 ◽  
pp. 2605-2608 ◽  
Author(s):  
Wen Yu Wang ◽  
Xin Jin ◽  
Bo Wang ◽  
Li Na Bian

Ultra-high-molecular-weight polyethylene (UHMWPE) fibers were treated by low temperature oxygen-plasma. The effects of oxygen-plasma treatment time on the properties of UHMWPE have been investigated. The wetting ability and roughness were increased significantly after the treatment. While, the tensile strength at break of UHMWE fibers were decreased with the treatment time. The optimum plasma treatment time is 2min.


1998 ◽  
Vol 18 (1-2) ◽  
pp. 49-62 ◽  
Author(s):  
Seung-Goo Lee ◽  
Tae-Jin Kang ◽  
Tae-Ho Yoon

Abstract The surface area change of UHMWPE fibers which underwent oxygen plasma treatment was measured as a function of plasma power and plasma treatment time. The interfacial adhesion of oxygen plasma treated UHMWPE fibers was evaluated via micro-droplet test and double cantilever beam test Surface area increased with plasma treatment time at 30 and 60W, but showed a maximum at 100 and 150W. The interfacial adhesion of UHMWPE fibers to vinylester resin exhibited the same trend as the surface area. SEM analysis revealed that oxygen plasma treatment roughened UHMWPE fibers by forming micro-pores leading to increased surface area. However, 1S0W plasma treatment led to degradation of the fibers and thus resulted in failure within the fiber surface layers, producing ribbon-like strips of fiber.


2022 ◽  
Author(s):  
Woochang Kim ◽  
Wonseok Lee ◽  
Seung-Mo Lee ◽  
Duckjong Kim ◽  
Jinsung Park

Abstract We propose a method of improving the thermoelectric properties of graphene using defect engineering through plasma irradiation and atomic layer deposition (ALD). We intentionally created atomic blemishes in graphene by oxygen plasma treatment and subsequently healed the atomistically defective places using Pt-ALD. After healing, the thermal conductivity of the initially defective graphene increased slightly, while the electrical conductivity and the square of the Seebeck coefficient increased pronouncedly. The thermoelectric figure of merit of the Pt-ALD treated graphene was measured to be over 4.8 times higher than the values reported in the literature. We expect that our study could provide a useful guideline for the development of graphene-based thermoelectric devices.


2020 ◽  
Vol 22 (21) ◽  
pp. 11767-11770
Author(s):  
Geun Wan Kim ◽  
Ji Won Ha

Increasing the oxygen plasma treatment time gradually broadened the LSPR linewidth of the single gold nanorods.


RSC Advances ◽  
2015 ◽  
Vol 5 (60) ◽  
pp. 48816-48821 ◽  
Author(s):  
M. Golda-Cepa ◽  
K. Engvall ◽  
A. Kotarba

The crystalline–amorphous parylene C structure was fabricated by Chemical Vapour Deposited (CVD) and functionalised in the micro- and nano-range with the oxygen plasma treatment.


2014 ◽  
Vol 26 (2) ◽  
pp. 024003 ◽  
Author(s):  
Stephan Ratzsch ◽  
Ernst-Bernhard Kley ◽  
Andreas Tünnermann ◽  
Adriana Szeghalmi

Sign in / Sign up

Export Citation Format

Share Document