scholarly journals An Experimental and Comparative Performance Evaluation of a Hybrid Photovoltaic-Thermoelectric System

2021 ◽  
Vol 9 ◽  
Author(s):  
Muhammad Ahsan Iqbal Khan ◽  
Muhammad Irfan Khan ◽  
Ali Hussain Kazim ◽  
Aqsa Shabir ◽  
Fahid Riaz ◽  
...  

The majority of incident solar irradiance causes thermalization in photovoltaic (PV) cells, attenuating their efficiency. In order to use solar energy on a large scale and reduce carbon emissions, their efficiency must be enhanced. Effective thermal management can be utilized to generate additional electrical power while simultaneously improving photovoltaic efficiency. In this work, an experimental model of a hybrid photovoltaic-thermoelectric generation (PV-TEG) system is developed. Ten bismuth telluride-based thermoelectric modules are attached to the rear side of a 10 W polycrystalline silicon-based photovoltaic module in order to recover and transform waste thermal energy to usable electrical energy, ultimately cooling the PV cells. The experiment was then carried out for 10 days in Lahore, Pakistan, on both a simple PV module and a hybrid PV-TEG system. The findings revealed that a hybrid system has boosted PV module output power and conversion efficiency. The operating temperature of the PV module in the hybrid system is reduced by 5.5%, from 55°C to 52°C. Due to a drop in temperature and the addition of some recovered energy by thermoelectric modules, the total output power and conversion efficiency of the system increased. The hybrid system’s cumulative output power increased by 19% from 8.78 to 10.84 W, compared to the simple PV system. Also, the efficiency of the hybrid PV-TEG system increased from 11.6 to 14%, which is an increase of 17% overall. The results of this research could provide consideration for designing commercial hybrid PV-TEG systems.

2006 ◽  
Vol 128 (3) ◽  
pp. 349-353 ◽  
Author(s):  
A. T. Naveed ◽  
E. C. Kang ◽  
E. J. Lee

The electrical power generated by a polycrystalline silicon photovoltaic (PV) module mounted on an unglazed transpired solar collector (UTC) has been studied and compared to that of a PV module without UTC for a quantitative analysis of electrical output and its role in reducing the simple payback periods of photovoltaic electrical systems. A 75W polycrystalline silicon PV module was fixed on an UTC in front of the ventilation fan, and effectiveness of cooling by means of the forced ventilation at the rate of 160CFM was monitored. The temperature reduction under forced ventilation was in the range of 3-9°C with a 5% recovery in the electrical output power on a typical day of the month of February 2005. The simulated and measured electrical power outputs are in reasonable agreement with root-mean-square error of 2.40. The life cycle assessment of a hypothetical PV system located at Daejeon, South Korea and consisting of 3kW PV modules fixed on a 50m2 UTC shows that with a possible reduction of 3-9°C in the operating temperatures, the system requires three 75W fewer PV modules. The simple payback period of PV system is reduced from 23yearsto15years when integrated into an UTC air heating system.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4389
Author(s):  
Juhee Jang ◽  
Kyungsoo Lee

Bifacial photovoltaic (PV) modules can take advantage of rear-surface irradiance, enabling them to produce more energy compared with monofacial PV modules. However, the performance of bifacial PV modules depends on the irradiance at the rear side, which is strongly affected by the installation setup and environmental conditions. In this study, we experiment with a bifacial PV module and a bifacial PV system by varying the size of the reflective material, vertical installation, temperature mismatch, and concentration of particulate matter (PM), using three testbeds. From our analyses, we found that the specific yield increased by 1.6% when the reflective material size doubled. When the PV module was installed vertically, the reduction of power due to the shadow effect occurred, and thus the maximum current was 14.3% lower than the short-circuit current. We also observed a maximum average surface temperature mismatch of 2.19 °C depending on the position of the modules when they were composed in a row. Finally, in clear sky conditions, when the concentration of PM 10 changed by 100 µg/m3, the bifacial gain increased by 4%. In overcast conditions, when the concentration of PM 10 changed by 100 µg/m3, the bifacial gain decreased by 0.9%.


2021 ◽  
Vol 11 (11) ◽  
pp. 5287
Author(s):  
Klemen Sredenšek ◽  
Bojan Štumberger ◽  
Miralem Hadžiselimović ◽  
Sebastijan Seme ◽  
Klemen Deželak

An operating temperature of the photovoltaic (PV) module greatly affects performance and its lifetime. Therefore, it is essential to evaluate operating temperature of the photovoltaic module in different weather conditions and how it affects its performance. The primary objective of this paper is to present a dynamic thermo-electric model for determining the temperature and output power of the photovoltaic module. The presented model is validated with field measurement at the Institute of Energy Technology, Faculty of Energy Technology, University of Maribor, Slovenia. The presented model was compared with other models in different weather conditions, such as clear, cloudy and overcast. The evaluation was performed for the operating temperature and output power of the photovoltaic module using Root-Mean-Square-Error (RMSE) and Mean-Absolute-Error (MAE). The average RMSE and MAE values are 1.75 °C and 1.14 °C for the thermal part and 20.34 W and 10.97 W for the electrical part.


Author(s):  
Nadia Bouaziz ◽  
Arezki Benfdila ◽  
Ahcene Lakhlef

The present paper deals with the development of a simulation model for predicting the performances of a solar photovoltaic (PV) system operating under current meteorological conditions at the site location. The proposed model is based on the cell equivalent circuit including a photocurrent source, a diode, a series and shunt resistances. Mathematical expressions developed for modeling the PV generator performances are based on current-voltage characteristic of the considered modules. The developed model allows the prediction of PV cell (module) behavior under different physical and environmental parameters. The model can be extended to extract physical parameters for a given solar PV module as a function of temperature and solar irradiation. A typical 260 W solar panel developed by LG Company was used for model evaluation using Newton-Raphson approach under MATLAB environment in order to analyze its behavior under actual operating conditions. Comparison of our results with data taken from the manufacturer’s datasheet shows good agreement and confirms the validity of our model. Hence, the proposed approach can be an alternative to extract different parameters of any PV module to study and predict its performances.


Photovoltaic (PV) module is one of the simplest technologies to convert the solar energy into the useful electrical energy. In the present paper, an attempt has been made to develop a simplified analytical expression for solar cell temperature and solar cell electrical efficiency of opaque and semi-transparent photovoltaic module in the terms of design and climatic parameters. Based on the energy balance of opaque and semi-transparent PV module, the performance parameters, namely, solar cell temperature, solar cell electrical efficiency, module efficiency and electrical power output have been evaluated for a typical clear day of May month of New Delhi climatic condition data taken from IMD (Indian Meteorological Department), Pune, India. The numerical simulations have been made on the MATLAB software. Based on the numerical computation, the effect of back cover opaque and semitransparent tedlar of module on the performance parameters has been investigated. From the results and discussion, it is found that the performance of photovoltaic module is very sensitive to the module temperature. Further, it is concluded that the semi-transparent photovoltaic module is more efficient than the opaque one. Thus, by the application of semi-transparent PV module in the design of stand-alone and rooftop PV system, the overall energy requirement and performance can be improved for same occupied area.


2021 ◽  
Vol 945 (1) ◽  
pp. 012016
Author(s):  
Muhammad Arif bin Azahari ◽  
Chua Yaw Long ◽  
Koh Yit Yan

Abstract This paper analyses the difference in terms of performance of passive cooling systems for photovoltaic (PV) modules. The objective of this paper is to identify which passive cooling systems offers the best results in reducing the operating temperature and improving the generation of output power. The performance of photovoltaic (PV) module will gradually decrease as the operating temperature increases. The energy from the sun’s photons are not enough to knock out the electrons from the atom to generate more electricity. That being the case, two passive cooling systems is developed which is the cotton wick structures with water and aluminium fins were attached to the back side of the photovoltaic (PV) module. The cotton wick structures with water utilises the capillary action of the water to extract excess heat from the module while the aluminium fins act as a heat sink that can remove heat from module to the adjacent air. Results showed that the cooling systems managed to enhance the output power by an average of 3.94% for the module with cotton wick structures with water while an average of 2.67% increment for the module under aluminium fin mounted as the cooling system.


Author(s):  
Gobind H. Atmaram

Commercially available photovoltaic (PV) modules and systems often fall short of meeting the performance ratings specified by the module manufacturers or system designers [1]. This has resulted in reduced performance and low system availability, some system failures, and generally, a lack of confidence by systems users. Hence, a need for an independent accredited laboratory to conduct the testing and certification of PV modules and systems has been indicated by the PV industry, electric utilities, and other system users and owners. To meet this industry and user need, the Florida Solar Energy Center (FSEC) has started a PV testing and certification program. The FSEC PV testing laboratory and certification program have been accredited by the American Association for Laboratory Accreditation (A2LA) and approved by the PowerMark Corporation (PMC, www.powermark.org ), which is the certification body of the PV industry in the United States. The FSEC program currently covers three areas: (i) PV module power rating certification, (ii) Stand-Alone PV system performance evaluation and certification, and (iii) Grid-Connected PV system design review and approval. The PV module power rating certification is central to these three areas of the FSEC program, as illustrated in Figure 1. The details of the FSEC PV testing laboratory accreditation and certification program are described in a previous paper [2].


2021 ◽  
Author(s):  
Mohamed Sharaf ◽  
Mohamed S. Yousef ◽  
Ahmed Huzayyin

Abstract In the present work, a passive cooling strategy combining an aluminium foam matrix (AFM) with PCM was employed to regulate the temperature of a photovoltaic (PV) system The comparison between three PV modules was established ,the first one was conventional without any changes ,the second one was PV combined with PCM (PV-PCM) and the last one was PV combined with modified PCM which contain an aluminum foam matrix embedded in it (PV-PCM/AFM).Outdoor experiments were carried out in the hot weather of Benha, Egypt, which is situated at latitude 30.466° North and longitude 31.185° East. A comparison of the three PV designs was given and analysed, based on PV surface temperature, PCM temperature, open-circuit voltage, output power generated, and electrical efficiency. It was observed that using composite PCM resulted in better heat absorption from the PV module and better temperature distribution inside the PCM enclosure. Furthermore, the results indicated that against the unmodified PV system, the average cell’s temperature in the PV-PCM system was dropped by 13.3% and its electrical power was enhanced by 9%. Meanwhile, the average cell temperature in the PV-PCM/AFM configuration was reduced by 21.6% while the enhancement of the electrical power was at 14%. Furthermore, the findings demonstrated that, as compared to unmodified PCM, AFM impregnation accelerated the melting of modified PCM by roughly 37%.


Solar photovoltaic-thermal (PVT) is an integrated system that produces both electrical and thermal energy simultaneously consist of PV module with heat extracting media for example water or air. The performance of the photovoltaic (PV) module depends upon the operating temperature of the PV module. The problem of non-uniform cooling of PV module can be solved by controlling the operating temperature of PV module systematically therefore, an automatic cooling system using Arduino integrated with PV module has been proposed. A theoretical model in term of heat transfer process analysis and simulation was developed to predict overall thermal-electrical conversion performances of Photovoltaic-Thermal (PVT) water system. The experimental validation of the used thermal and electrical model has been carried out by measured data. The result shows there is a good agreement between experimental and simulated results. This paper presents the electrical and thermal performance evaluation of Photovoltaic Module Integrated with Automatic Cooling System Using Arduino and comparing its performance with conventional solar PV system.


Sign in / Sign up

Export Citation Format

Share Document