scholarly journals Efficiency Enhancement of Photovoltaic Module Using An Aluminum Foam Matrix Filled With Phase Change Material (PCM) Under Hot Climate Conditions

Author(s):  
Mohamed Sharaf ◽  
Mohamed S. Yousef ◽  
Ahmed Huzayyin

Abstract In the present work, a passive cooling strategy combining an aluminium foam matrix (AFM) with PCM was employed to regulate the temperature of a photovoltaic (PV) system The comparison between three PV modules was established ,the first one was conventional without any changes ,the second one was PV combined with PCM (PV-PCM) and the last one was PV combined with modified PCM which contain an aluminum foam matrix embedded in it (PV-PCM/AFM).Outdoor experiments were carried out in the hot weather of Benha, Egypt, which is situated at latitude 30.466° North and longitude 31.185° East. A comparison of the three PV designs was given and analysed, based on PV surface temperature, PCM temperature, open-circuit voltage, output power generated, and electrical efficiency. It was observed that using composite PCM resulted in better heat absorption from the PV module and better temperature distribution inside the PCM enclosure. Furthermore, the results indicated that against the unmodified PV system, the average cell’s temperature in the PV-PCM system was dropped by 13.3% and its electrical power was enhanced by 9%. Meanwhile, the average cell temperature in the PV-PCM/AFM configuration was reduced by 21.6% while the enhancement of the electrical power was at 14%. Furthermore, the findings demonstrated that, as compared to unmodified PCM, AFM impregnation accelerated the melting of modified PCM by roughly 37%.

2006 ◽  
Vol 128 (3) ◽  
pp. 349-353 ◽  
Author(s):  
A. T. Naveed ◽  
E. C. Kang ◽  
E. J. Lee

The electrical power generated by a polycrystalline silicon photovoltaic (PV) module mounted on an unglazed transpired solar collector (UTC) has been studied and compared to that of a PV module without UTC for a quantitative analysis of electrical output and its role in reducing the simple payback periods of photovoltaic electrical systems. A 75W polycrystalline silicon PV module was fixed on an UTC in front of the ventilation fan, and effectiveness of cooling by means of the forced ventilation at the rate of 160CFM was monitored. The temperature reduction under forced ventilation was in the range of 3-9°C with a 5% recovery in the electrical output power on a typical day of the month of February 2005. The simulated and measured electrical power outputs are in reasonable agreement with root-mean-square error of 2.40. The life cycle assessment of a hypothetical PV system located at Daejeon, South Korea and consisting of 3kW PV modules fixed on a 50m2 UTC shows that with a possible reduction of 3-9°C in the operating temperatures, the system requires three 75W fewer PV modules. The simple payback period of PV system is reduced from 23yearsto15years when integrated into an UTC air heating system.


Photovoltaic (PV) module is one of the simplest technologies to convert the solar energy into the useful electrical energy. In the present paper, an attempt has been made to develop a simplified analytical expression for solar cell temperature and solar cell electrical efficiency of opaque and semi-transparent photovoltaic module in the terms of design and climatic parameters. Based on the energy balance of opaque and semi-transparent PV module, the performance parameters, namely, solar cell temperature, solar cell electrical efficiency, module efficiency and electrical power output have been evaluated for a typical clear day of May month of New Delhi climatic condition data taken from IMD (Indian Meteorological Department), Pune, India. The numerical simulations have been made on the MATLAB software. Based on the numerical computation, the effect of back cover opaque and semitransparent tedlar of module on the performance parameters has been investigated. From the results and discussion, it is found that the performance of photovoltaic module is very sensitive to the module temperature. Further, it is concluded that the semi-transparent photovoltaic module is more efficient than the opaque one. Thus, by the application of semi-transparent PV module in the design of stand-alone and rooftop PV system, the overall energy requirement and performance can be improved for same occupied area.


2020 ◽  
Vol 7 (10) ◽  
pp. 384-389
Author(s):  
Jawad Ahmad ◽  

Reliability and long term performance of photovoltaic (PV) system is of vital importance in switching from conventional sources to sustainable one. Design, study and analysis of key components in a photovoltaic power system starting from generation of power to withstands number of climatic stresses and uninterrupted power supply plays a key role. One of the key elements in photovoltaic system is photovoltaic module. Also power generated in photovoltaic system is dependent on a source of energy that changes in every instant and with the passage of time during its operation .Hence it is paramount to build a long lasting photovoltaic module and analyze characteristics of the PV module under various conditions. This paper presents an efficient PV module based on PV equivalent circuit model using MATLAB/Simulink, and compared the simulated model results with manufacturer’s specifications like peak current, peak voltage, open circuit voltage and short circuit current .Also the performance of the module under variation of series resistance, irradiation, and temperature are analyzed. Data from five different areas across KP are noted and the results were Simulated and compared with the rated data.


2021 ◽  
Vol 31 (4) ◽  
pp. 243-248
Author(s):  
Nassima Bakir

Most developing countries have hot climate, ordinary jobsites characterized by reduced of human resources, equipment and infrastructures. The objective of this article is to make an experimental study of the influence of the hot climate such as that of Algeria, on the different properties of concrete in the fresh state, such as excessive water evaporation from the concrete surface, increased demand for water, increased slump loss corresponding to additional water on job-site, higher plastic shrinkage cracking and difficulty in controlling air content. At the hardened state, we could mention a reduction of strength at 28 days, decreased durability resulting from cracking at long-term period. To show the problems linked to concreting under these conditions and to present the appropriate solutions concrete or mortar can withstand the conditions in which it is implemented. Thus, negative effects caused principally by hot weather concreting motivated the choice of the such study. The research experimental work conditions in which the cementitious matrix was kept concerned two different environments, namely hot and dry climate conditions (t = 40°, h = 0%) alike the climate of the region of M'sila., and that of a medium with a hot and humid environment (t = 40°, h = 100%). The output of the investigation demonstrated the crucial role of the cure method in hot regions. The comparison of results for a reference concrete kept in air without any curing measures with two curing types simulating hot weather environment of the region M’sila was undertaken. These obtained outcome results were discussed based on the influence of climatic conditions to conclude procedures for hot weather concreting and suitable cure methods.


2021 ◽  
Vol 24 (6) ◽  
pp. 1243-1254
Author(s):  
M. A. Mironov ◽  
S. A. Kozlov

The purpose of the work is to develop a methodology for designing a stand-alone power supply system based on photovoltaic (PV) converters for technical security equipment power supply. The object of the study is a PV converter - based stand-alone power supply system. Energy storage units, which are widely used in the designing of power supply systems for power supply of technical security equipment are presented. A methodology for designing a power supply system is used, which takes into account the integral effect of solar insolation, ambient temperature in the range from - 40°C to +50°C, temperature of a PV module and a storage battery; PV module capacity; requirements for independent operation of technical security equipment; electrical characteristics of the solar charge controller (rated open-circuit voltage and rated charge current). To calculate the total solar insolation arriving at the surface of a photovoltaic module, the Kastrov model is used for calculating direct solar radiation; the Berlage model is used for calculating the scattered solar energy and the Berland model is used for calculating insolation in cloudy conditions. The studies of lithium-titanate storage batteries have been carried out in the climate chamber and a corresponding mathematical model has been developed for the temperature-dependent capacity of the battery. To determine solar insolation falling on the tilted surface of the PV module the software has been developed in the C# programming language. The designed PV module-based power supply system provides an independent uninterrupted continuous power supply of equipment under constant consumption of no more than 115.2 Wh per day by technical security equipment. The results of the work can be used in the development of a stand-alone power supply system for power supply of technical security equipment, security and control.


2018 ◽  
Vol 204 ◽  
pp. 04010 ◽  
Author(s):  
Krismadinata ◽  
Remon Lapisa ◽  
Syahril ◽  
Asnil

This paper discusses an attempt to compares the electrical characteristics of two solar modules of the same type and size in which one of the solar modules at the bottom is mounted a copper pipe for circulating water (as call photovoltaic thermal). The research was steered to observe water cooling effect to electrical characteristics of PV module. This system serves as a heat absorption on the bottom of the solar module. The experiment is conducted at the same time, place, and sunlight intensity conditions for both solar modules. The characteristics of short-circuit current, open circuit voltage, upper and lower temperature and the irradiation of sunlight from the two solar modules are observed. The test results show that photovoltaic thermal generate greater electrical power than solar modules not equipped with heat absorption


2021 ◽  
Vol 9 ◽  
Author(s):  
Muhammad Ahsan Iqbal Khan ◽  
Muhammad Irfan Khan ◽  
Ali Hussain Kazim ◽  
Aqsa Shabir ◽  
Fahid Riaz ◽  
...  

The majority of incident solar irradiance causes thermalization in photovoltaic (PV) cells, attenuating their efficiency. In order to use solar energy on a large scale and reduce carbon emissions, their efficiency must be enhanced. Effective thermal management can be utilized to generate additional electrical power while simultaneously improving photovoltaic efficiency. In this work, an experimental model of a hybrid photovoltaic-thermoelectric generation (PV-TEG) system is developed. Ten bismuth telluride-based thermoelectric modules are attached to the rear side of a 10 W polycrystalline silicon-based photovoltaic module in order to recover and transform waste thermal energy to usable electrical energy, ultimately cooling the PV cells. The experiment was then carried out for 10 days in Lahore, Pakistan, on both a simple PV module and a hybrid PV-TEG system. The findings revealed that a hybrid system has boosted PV module output power and conversion efficiency. The operating temperature of the PV module in the hybrid system is reduced by 5.5%, from 55°C to 52°C. Due to a drop in temperature and the addition of some recovered energy by thermoelectric modules, the total output power and conversion efficiency of the system increased. The hybrid system’s cumulative output power increased by 19% from 8.78 to 10.84 W, compared to the simple PV system. Also, the efficiency of the hybrid PV-TEG system increased from 11.6 to 14%, which is an increase of 17% overall. The results of this research could provide consideration for designing commercial hybrid PV-TEG systems.


Author(s):  
Nadia Bouaziz ◽  
Arezki Benfdila ◽  
Ahcene Lakhlef

The present paper deals with the development of a simulation model for predicting the performances of a solar photovoltaic (PV) system operating under current meteorological conditions at the site location. The proposed model is based on the cell equivalent circuit including a photocurrent source, a diode, a series and shunt resistances. Mathematical expressions developed for modeling the PV generator performances are based on current-voltage characteristic of the considered modules. The developed model allows the prediction of PV cell (module) behavior under different physical and environmental parameters. The model can be extended to extract physical parameters for a given solar PV module as a function of temperature and solar irradiation. A typical 260 W solar panel developed by LG Company was used for model evaluation using Newton-Raphson approach under MATLAB environment in order to analyze its behavior under actual operating conditions. Comparison of our results with data taken from the manufacturer’s datasheet shows good agreement and confirms the validity of our model. Hence, the proposed approach can be an alternative to extract different parameters of any PV module to study and predict its performances.


Author(s):  
Gobind H. Atmaram

Commercially available photovoltaic (PV) modules and systems often fall short of meeting the performance ratings specified by the module manufacturers or system designers [1]. This has resulted in reduced performance and low system availability, some system failures, and generally, a lack of confidence by systems users. Hence, a need for an independent accredited laboratory to conduct the testing and certification of PV modules and systems has been indicated by the PV industry, electric utilities, and other system users and owners. To meet this industry and user need, the Florida Solar Energy Center (FSEC) has started a PV testing and certification program. The FSEC PV testing laboratory and certification program have been accredited by the American Association for Laboratory Accreditation (A2LA) and approved by the PowerMark Corporation (PMC, www.powermark.org ), which is the certification body of the PV industry in the United States. The FSEC program currently covers three areas: (i) PV module power rating certification, (ii) Stand-Alone PV system performance evaluation and certification, and (iii) Grid-Connected PV system design review and approval. The PV module power rating certification is central to these three areas of the FSEC program, as illustrated in Figure 1. The details of the FSEC PV testing laboratory accreditation and certification program are described in a previous paper [2].


Author(s):  
Narimane Khelfaoui ◽  
Ahmed Djafour ◽  
Khadidja Bouali ◽  
Mohamed Bilal Danoune ◽  
Abdelmoumon Gougui ◽  
...  

Abstract To predict the I-V characteristics of the photovoltaic module, five parameters photovoltaic model Abstract: To predict the I-V characteristics of the photovoltaic module, five parameters photovoltaic model was utilized. The most influential parameters in the photovoltaic module are the solar irradiance level (E) and the temperature (T). The present research was conducted due to the high-temperature values in Ouargla city (can reach 60 °C in the hot season), which will affect remarkably the installed PV installations in this region. The experimental was done in several days cause the investigation need a constant irradiance values with different temperature. The temperature of a photovoltaic module varies according to other conditions, the temperature measurements made on the rear face of the PV module may not be indicative due to a temperature gradient in the material of the rear face of the module. Unfortunately, photovoltaic systems manufacturers do not take into consideration these environmental circumstances which negatively influence the module parameters and yielded deterioration in the system efficiency. The aim of this paper is to investigate the effect of the temperature term on the electrical performances such as the open circuit voltage (Voc), short circuit current (Isc), optimal power (Pm) and Fill Factor. The temperature distribution is non-uniform temperature on the surface of PV modules joined to that of the quality of temperature measurements affects the values of temperature coefficients found. To validate a model allows the researcher to get approximately the I-V characteristic similar to the experiment values. It use the conventional technique (Newton Raphson method) and it was compared by an artificial intelligent method which is the PSO technique, the five parameters estimated (Iph, Is, Rs, Rp, n). This proposed approach can be utilized to model any marketable PV module based on given datasheet parameters only. Statistical indicators were adopted to evaluate the performance of the proposed models; where the relative error of the PSO method comes more less the conventional method.


Sign in / Sign up

Export Citation Format

Share Document