Uncertainty Estimates of Photovoltaic Module Performance Measurements

Author(s):  
Gobind H. Atmaram

Commercially available photovoltaic (PV) modules and systems often fall short of meeting the performance ratings specified by the module manufacturers or system designers [1]. This has resulted in reduced performance and low system availability, some system failures, and generally, a lack of confidence by systems users. Hence, a need for an independent accredited laboratory to conduct the testing and certification of PV modules and systems has been indicated by the PV industry, electric utilities, and other system users and owners. To meet this industry and user need, the Florida Solar Energy Center (FSEC) has started a PV testing and certification program. The FSEC PV testing laboratory and certification program have been accredited by the American Association for Laboratory Accreditation (A2LA) and approved by the PowerMark Corporation (PMC, www.powermark.org ), which is the certification body of the PV industry in the United States. The FSEC program currently covers three areas: (i) PV module power rating certification, (ii) Stand-Alone PV system performance evaluation and certification, and (iii) Grid-Connected PV system design review and approval. The PV module power rating certification is central to these three areas of the FSEC program, as illustrated in Figure 1. The details of the FSEC PV testing laboratory accreditation and certification program are described in a previous paper [2].

2006 ◽  
Vol 128 (3) ◽  
pp. 349-353 ◽  
Author(s):  
A. T. Naveed ◽  
E. C. Kang ◽  
E. J. Lee

The electrical power generated by a polycrystalline silicon photovoltaic (PV) module mounted on an unglazed transpired solar collector (UTC) has been studied and compared to that of a PV module without UTC for a quantitative analysis of electrical output and its role in reducing the simple payback periods of photovoltaic electrical systems. A 75W polycrystalline silicon PV module was fixed on an UTC in front of the ventilation fan, and effectiveness of cooling by means of the forced ventilation at the rate of 160CFM was monitored. The temperature reduction under forced ventilation was in the range of 3-9°C with a 5% recovery in the electrical output power on a typical day of the month of February 2005. The simulated and measured electrical power outputs are in reasonable agreement with root-mean-square error of 2.40. The life cycle assessment of a hypothetical PV system located at Daejeon, South Korea and consisting of 3kW PV modules fixed on a 50m2 UTC shows that with a possible reduction of 3-9°C in the operating temperatures, the system requires three 75W fewer PV modules. The simple payback period of PV system is reduced from 23yearsto15years when integrated into an UTC air heating system.


2018 ◽  
Vol 12 (2) ◽  
pp. 98 ◽  
Author(s):  
Jalaluddin . ◽  
Baharuddin Mire

Actual performance of photovoltaic module with solar tracking is presented. Solar radiation can be converted into electrical energy using photovoltaic (PV) modules. Performance of polycristalline silicon PV modules with and without solar tracking are investigated experimentally. The PV module with dimension 698 x 518 x 25 mm has maximum power and voltage is 45 Watt and 18 Volt respectively. Based on the experiment data, it is concluded that the performance of PV module with solar tracking increases in the morning and afternoon compared with that of fixed PV module. It increases about 18 % in the morning from 10:00 to 12:00 and in the afternoon from 13:30 to 14:00 (local time). This study also shows the daily performance characteristic of the two PV modules. Using PV module with solar tracking provides a better performance than fixed PV module. 


Author(s):  
Mohamad Fakrie Mohamad Ali ◽  
◽  
Mohd Noor Abdullah ◽  

This paper presents the feasibility study of the technical and economic performances of grid-connected photovoltaic (PV) system for selected rooftops in Universiti Tun Hussein Onn Malaysia (UTHM). The analysis of the electricity consumption and electricity bill data of UTHM campus show that the monthly electricity usage in UTHM campus is very high and expensive. The main purpose of this project is to reduce the annual electricity consumption and electricity bill of UTHM with Net Energy Metering (NEM) scheme. Therefore, the grid-connected PV system has been proposed at Dewan Sultan Ibrahim (DSI), Tunku Tun Aminah Library (TTAL), Fakulti Kejuruteraan Awam dan Alam Bina (FKAAS) and F2 buildings UTHM by using three types of PV modules which are mono-crystalline silicon (Mono-Si), poly-crystalline silicon (Poly-Si) and Thin-film. These three PV modules were modeled, simulated and calculated using Helioscope software with the capacity of 2,166.40kWp, 2,046.20kWp and 1,845kWp respectively for the total rooftop area of 190,302.9 ft². The economic analysis was conducted on the chosen three installed PV modules using RETScreen software. As a result, the Mono-Si showed the best PV module that can produce 2,332,327.40 kWh of PV energy, 4.4% of CO₂ reduction, 9.3 years of payback period considering 21 years of the contractual period and profit of RM4,932,274.58 for 11.7 years after payback period. Moreover, the proposed installation of 2,166.40kWp (Mono-SI PV module) can reduce the annual electricity bill and CO2 emission of 3.6% (RM421,561.93) and 4.4% (1,851.40 tCO₂) compared to the system without PV system.


2019 ◽  
Vol 9 ◽  
pp. 59-69
Author(s):  
Alok Dhaundiyal ◽  
Divine Atsu

This paper presents the modeling and simulation of the characteristics and electrical performance of photovoltaic (PV) solar modules. Genetic coding is applied to obtain the optimized values of parameters within the constraint limit using the software MATLAB. A single diode model is proposed, considering the series and shunt resistances, to study the impact of solar irradiance and temperature on the power-voltage (P-V) and current-voltage (I-V) characteristics and predict the output of solar PV modules. The validation of the model under the standard test conditions (STC) and different values of temperature and insolation is performed, as well as an evaluation using experimentally obtained data from outdoor operating PV modules. The obtained results are also subjected to comply with the manufacturer’s data to ensure that the proposed model does not violate the prescribed tolerance range. The range of variation in current and voltage lies in the domain of 8.21 – 8.5 A and 22 – 23 V, respectively; while the predicted solutions for current and voltage vary from 8.28 – 8.68 A and 23.79 – 24.44 V, respectively. The measured experimental power of the PV module estimated to be 148 – 152 W is predicted from the mathematical model and the obtained values of simulated solution are in the domain of 149 – 157 W. The proposed scheme was found to be very effective at determining the influence of input factors on the modules, which is difficult to determine through experimental means.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4389
Author(s):  
Juhee Jang ◽  
Kyungsoo Lee

Bifacial photovoltaic (PV) modules can take advantage of rear-surface irradiance, enabling them to produce more energy compared with monofacial PV modules. However, the performance of bifacial PV modules depends on the irradiance at the rear side, which is strongly affected by the installation setup and environmental conditions. In this study, we experiment with a bifacial PV module and a bifacial PV system by varying the size of the reflective material, vertical installation, temperature mismatch, and concentration of particulate matter (PM), using three testbeds. From our analyses, we found that the specific yield increased by 1.6% when the reflective material size doubled. When the PV module was installed vertically, the reduction of power due to the shadow effect occurred, and thus the maximum current was 14.3% lower than the short-circuit current. We also observed a maximum average surface temperature mismatch of 2.19 °C depending on the position of the modules when they were composed in a row. Finally, in clear sky conditions, when the concentration of PM 10 changed by 100 µg/m3, the bifacial gain increased by 4%. In overcast conditions, when the concentration of PM 10 changed by 100 µg/m3, the bifacial gain decreased by 0.9%.


Author(s):  
L. M. Abdali ◽  
H. A. Issa ◽  
Q. A. Ali ◽  
V. V. Kuvshinov ◽  
E. A. Bekirov

The use of renewable energy sources and in particular solar energy has received considerable attention in recent decades. Photovoltaic (PV) energy projects are being implemented in very large numbers in many countries. Many research projects are carried out to analyze and verify the performance of PV modules. Implementing a pilot plant for a photovoltaic power system with a DC / DC converter to test system performance is not always possible due to practical limitations. The software simulation model helps to analyze the performance of PV modules, and more useful would be a general circuit model that can be used to test any commercial PV module. This paper presents a simulation of a mathematical model of a photovoltaic module that boosts a DC / AC converter and also simulates the operating modes of a solar generating system at various load characteristics. The model presented in this article can be used as a generalized PV module to analyze the performance of any commercially available PV module. In the presented work, the parameters that affect the performance of the generating system were investigated. The results were obtained for the operation of DC/AC photoelectric converters. The presented characteristics strongly depend on such parameters as solar insolation, the temperature of the working surface of the photovoltaic module, the charge-discharge time of storage batteries, etc. When one of the values ​​of these parameters changes, the operating modes of the solar power generating battery change. Changing the operating modes can lead to malfunctions of the entire operation of the system, therefore, it is necessary to control all the energy characteristics of the installation. The actions proposed in this work aimed at studying the operation of the photovoltaic system and the energy storage system, as well as the use of the necessary auxiliary devices for monitoring and controlling the parameters of the installation, are capable of achieving an increase in the efficiency of the generation of the system. The studies carried out in the course of the presented work make it possible to increase the level of knowledge on the control and management of the parameters of photovoltaic generating plants and expand the possibilities of their uninterrupted operation and increase energy production.


ACTA IMEKO ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 93
Author(s):  
Giovanni Bucci ◽  
Fabrizio Ciancetta ◽  
Edoardo Fiorucci ◽  
Antonio Delle Femine

<p class="Abstract">Shading is one of the most critical factors that produces a reduction in power in photovoltaic (PV) modules. The main causes of shading are related to cloud cover; local specificity; natural characteristics; building and other civil works; and the presence of the PV system itself. A reduction in overall radiation produces a consequent reduction in electric power. Another more problematic effect is associated with the partial shading of the PV modules. The shaded cell behaves as a load, dissipating energy and increasing its temperature. This effect can involve irreversible changes to the PV module, with a decrease in performance that can even cause the destruction of the shaded cell.</p><p>The main aim of this work is the development of a testing procedure for the performance evaluation of commercial PV modules in the presence of partial shading on one cell. Tests were carried out using thermographic and electric measurements and by varying the shading levels according to IEC standards. Shading up to total darkening is achieved by means of a number of filters that reduce the direct solar irradiance.</p><p>As a case study, a complete characterisation of a 180 Wp polycrystalline PV module was performed according to the proposed testing procedure, showing that high temperatures can be measured on the shaded PV module surface even if only 50 % of the surface of one cell of the PV module is darkened.</p>


AIMS Energy ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1192-1212
Author(s):  
Honnurvali Mohamed Shaik ◽  
◽  
Adnan Kabbani ◽  
Abdul Manan Sheikh ◽  
Keng Goh ◽  
...  

<abstract> <p>Degradation of PV modules have a severe impact on its power-producing capabilities thus affecting the reliability, performance over the long run. To understand the PV degradation happening under the influence of local environmental conditions a survey was conducted on six polycrystalline silicon-based PV modules over five years. It has been observed that the average degradation rates stood at 1.02%/year at irradiances 800 W/m<sup>2</sup> and 0.99%/year at irradiances 600 W/m<sup>2</sup>, which are almost double the manufacturer proposed values. Upon further investigations, it has been found that discoloration of encapsulant in modules 3, 5, and 6 have been the main factor causing the reduction of the short circuit current (I<sub>sc</sub>) thus affecting the overall power production capacity of the installed PV system. Considering the amount of time, resources and manpower invested to perform this survey an alternate way of estimating the PV degradation rates is also investigated. The exponential decay factor-based model is adopted to correlate the encapsulant discoloration seen on-site in the form of a mathematical equation to predict the current loss. This loss is defined as the visual loss factor in this paper. Further, the output I-V curves are simulated using MATLAB Simulink-based mathematical model which also integrates visual loss factor (VLF) losses into it. Such simulated I-V curves have shown a good match with the measured I-V curves at the same irradiance with an error less than 3%. Authors anticipate that this modelling approach can open the door for further research in developing algorithms that can simulate the PV degradation rates.</p> </abstract>


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3037 ◽  
Author(s):  
Xiaobo Xu ◽  
Xiaocheng Zhang ◽  
Zhaowu Huang ◽  
Shaoyou Xie ◽  
Wenping Gu ◽  
...  

In the photovoltaic (PV) field, the outdoor evaluation of a PV system is quite complex, due to the variations of temperature and irradiance. In fact, the diagnosis of the PV modules is extremely required in order to maintain the optimum performance. In this paper, an artificial neural network (ANN) is proposed to build and train the model, and evaluate the PV module performance by mean bias error, mean square error and the regression analysis. We take temperature, irradiance and a specific voltage for input, and a specific current value for output, repeat several times in order to obtain an I-V curve. The main feature lies to the data-driven black-box method, with the ignorance of any analytical equations and hence the conventional five parameters (serial resistance, shunt resistance, non-ideal factor, reverse saturation current, and photon current). The ANN is able to predict the I-V curves of the Si PV module at arbitrary irradiance and temperature. Finally, the proposed algorithm has proved to be valid in terms of comparison with the testing dataset.


2020 ◽  
Vol 10 (16) ◽  
pp. 5465 ◽  
Author(s):  
Ilke Celik ◽  
Marina Lunardi ◽  
Austen Frederickson ◽  
Richard Corkish

This work provides economic and environmental analyses of transportation-related impacts of different photovoltaic (PV) module technologies at their end-of-life (EoL) phase. Our results show that crystalline silicon (c-Si) modules are the most economical PV technology (United States Dollars (USD) 2.3 per 1 m2 PV module (or 0.87 ¢/W) for transporting in the United States for 1000 km). Furthermore, we found that the financial costs of truck transportation for PV modules for 2000 km are only slightly more than for 1000 km. CO2-eq emissions associated with transport are a significant share of the EoL impacts, and those for copper indium gallium selenide (CIGS) PV modules are always higher than for c-Si and CdTe PV. Transportation associated CO2-eq emissions contribute 47%, 28%, and 40% of overall EoL impacts of c-Si, CdTe, and CIGS PV wastes, respectively. Overall, gasoline-fueled trucks have 65–95% more environmental impacts compared to alternative transportation options of the diesel and electric trains and ships. Finally, a hotspot analysis on the entire life cycle CO2-eq emissions of different PV technologies showed that the EoL phase-related emissions are more significant for thin-film PV modules compared to crystalline silicon PV technologies and, so, more environmentally friendly material recovery methods should be developed for thin film PV.


Sign in / Sign up

Export Citation Format

Share Document