Study on the Impact of Fouling on Axial Compressor Stage

Author(s):  
Shaowen Chen ◽  
Chen Zhang ◽  
Hui Shi ◽  
Songtao Wang ◽  
Zhongqi Wang

Mechanistic research on the fouling of the compressor is necessary to delay the deterioration caused by fouling during long-term operation, and to explore methods that will lower compressor component deterioration, thereby improving the overall performance. The effects of fouling on the performance of an axial compressor stage were investigated numerically. As a representative of the realistic compressor stages, the NASA Stage 35 was considered to perform a numerical investigation by means of a commercial computational fluid dynamic code. The numerical model was validated by comparing with the experimental data available from literatures. The computed performance maps and exit parameter distributions showed a good agreement with experimental data. The model was then used to simulate the effect of fouling on compressor stage by various fouling configurations including added thickness and surface roughness levels. The mechanism of the compressor deterioration due to fouling was discussed in detail. As a result, despite the contribution of added thickness on the work capacity, it substantially narrowed the table operating ranges substantially, causing a greater effect on the overall compressor performance. The influence of roughness applied in the rotor is similar to that in the whole stage, including the drop in mass flow rate at choked and near stall point, pressure ratio, and efficiency, whereas, compressor performance slightly decreases in the stator. When the surface roughness is equal to 50 μm, the drop in mass flow rate under a low Reynolds number is less than that under normal conditions, with little influence on the stable operating range.

Author(s):  
Chihiro Myoren ◽  
Yasuo Takahashi ◽  
Manabu Yagi ◽  
Takanori Shibata ◽  
Tadaharu Kishibe

An axial compressor was developed for an industrial gas turbine equipped with a water atomization cooling (WAC) system, which is a kind of inlet fogging technique with overspray. The compressor performance was evaluated using a 40MW-class test facility for the advanced humid air turbine system. A prediction method to estimate the effect of WAC was developed for the design of the compressor. The method was based on a streamline curvature (SLC) method implementing a droplet evaporation model. Four test runs with WAC have been conducted since February 2012. The maximum water mass flow rate was 1.2% of the inlet mass flow rate at the 4th test run, while the design value was 2.0%. The results showed that the WAC decreased the inlet and outlet temperatures compared with the DRY (no fogging) case. These decreases changed the matching point of the gas turbine, and increased the mass flow rate and the pressure ratio by 1.8% and 1.1%, respectively. Since prediction results agreed with the results of the test run qualitatively, the compressor performance improvement by WAC was confirmed both experimentally and analytically. The test run with the design water mass flow rate is going to be conducted in the near future.


Author(s):  
Qi Wang ◽  
Lanxue Ren ◽  
Zhou Zhang ◽  
Ting Wang ◽  
Mingcong Luo

Abstract This paper presents a numerical model based on the mass flow rate of seal leakage. This numerical model is considered as a correct method for 3-D numerical simulation. It can be used to simulate the effect of seal leakage at the stator root of a multistage axial compressor. Implementation of the correct method is using a numerical model based on the flux conservation which can control the mass flow rate of seal leakage accurately at the seal cavity of compressor. The mass flow rate of seal leakage is chosen as the key research parameter on the aerodynamic performance effect of the seal engineering application in a multistage axial compressor. Combined with the 3-D numerical simulation methods, an engineering numerical approach is set up in this study. A nine-stage axial compressor is taken as the research object in this paper and its aerodynamic performance is tested for proving the applicability of the numerical model for seal leakage. In the cases of several operating rotation speeds, numerical results of the nine-stage axial compressor performance characteristic curves are in good agreement with the experimental data. It is considered that the numerical approach based on the simplified numerical model in this paper can predict the performance of multistage axial compressor accurately. Then, comparisons are made against different cases of seal leakage mass flow rate for analyzing the impact of seal leakage increasing on the aerodynamic performance of the nine-stage axial compressor. The main point of comparisons is focused on the changes of the overall performance and the flow distribution in the compressor with the seal leakage changing. The results indicate that performance of multistage axial compressor is degenerated faster and faster with seal leakage increasing in all operating working points. An overall decline is appeared in the flow capacity, working capacity, efficiency and surge margin of the compressor. For the impact investigation on the changes of flow distribution, the total pressure loss coefficient, the relative Mach number contours and the movement of streamlines are studied in different seal leakage cases under several operating working points. The result also shows that stators located in front stages of multistage axial compressor are affected more seriously with the increasing mass flow rate of seal leakage. Under the influence of seal leakage, degradation of flow condition in stators located in front stages is more severely than that in back stages, the total pressure loss coefficient and entropy are increased, and the flow separations at the root of stators in front stages are developed faster with seal leakage increasing. So it can be confirmed that relatively larger flow losses in front stages bring significant impact on the decay of aerodynamic performance for a multistage axial compressor.


2021 ◽  
Vol 9 ◽  
Author(s):  
Qi Wang ◽  
Zhou Zhang ◽  
Qingsong Hong ◽  
Lanxue Ren

In this paper, a numerical model based on the mass flow rate of seal leakage is presented, and a 3D numerical method of a multistage axial compressor with good engineering practicability is established. Validation consists of modeling a nine-stage axial compressor in all operating rotation speeds and calculating results of the performance characteristic curves in good agreement with test data. Comparisons are made against different cases of seal leakage mass flow rate for analyzing the impact of increasing seal leakage on the aerodynamic performance of the multistage axial compressor. The results indicate that the performance of the nine-stage axial compressor is degenerated faster and faster with seal leakage increasing in all operating working points, and the degeneration of performance of this compressor can be evaluated by the relationships of main performance parameters with the mass flow rate of seal leakage. Comparisons of flow distribution in the compressor for different cases of seal leakage also show that stators located in front stages of the multistage axial compressor are affected more seriously by the increasing seal leakage, and it can be confirmed that relatively larger flow losses in front stages bring significant impact on the decay of aerodynamic performance of a multistage axial compressor.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2033
Author(s):  
Amjid Khan ◽  
Muhammad Irfan ◽  
Usama Muhammad Niazi ◽  
Imran Shah ◽  
Stanislaw Legutko ◽  
...  

Downsizing in engine size is pushing the automotive industry to operate compressors at low mass flow rate. However, the operation of turbocharger centrifugal compressor at low mass flow rate leads to fluid flow instabilities such as stall. To reduce flow instability, surface roughness is employed as a passive flow control method. This paper evaluates the effect of surface roughness on a turbocharger centrifugal compressor performance. A realistic validation of SRV2-O compressor stage designed and developed by German Aerospace Center (DLR) is achieved from comparison with the experimental data. In the first part, numerical simulations have been performed from stall to choke to study the overall performance variation at design conditions: 2.55 kg/s mass flow rate and rotational speed of 50,000 rpm. In second part, surface roughness of magnitude range 0–200 μm has been applied on the diffuser shroud to control flow instability. It was found that completely rough regime showed effective quantitative results in controlling stall phenomena, which results in increases of operating range from 16% to 18% and stall margin from 5.62% to 7.98%. Surface roughness as a passive flow control method to reduce flow instability in the diffuser section is the novelty of this research. Keeping in view the effects of surface roughness, it will help the turbocharger manufacturers to reduce the flow instabilities in the compressor with ease and improve the overall performance.


Author(s):  
Jinlan Gou ◽  
Wei Wang ◽  
Can Ma ◽  
Yong Li ◽  
Yuansheng Lin ◽  
...  

Using supercritical carbon dioxide (SCO2) as the working fluid of a closed Brayton cycle gas turbine is widely recognized nowadays, because of its compact layout and high efficiency for modest turbine inlet temperature. It is an attractive option for geothermal, nuclear and solar energy conversion. Compressor is one of the key components for the supercritical carbon dioxide Brayton cycle. With established or developing small power supercritical carbon dioxide test loop, centrifugal compressor with small mass flow rate is mainly investigated and manufactured in the literature; however, nuclear energy conversion contains more power, and axial compressor is preferred to provide SCO2 compression with larger mass flow rate which is less studied in the literature. The performance of the axial supercritical carbon dioxide compressor is investigated in the current work. An axial supercritical carbon dioxide compressor with mass flow rate of 1000kg/s is designed. The thermodynamic region of the carbon dioxide is slightly above the vapor-liquid critical point with inlet total temperature 310K and total pressure 9MPa. Numerical simulation is then conducted to assess this axial compressor with look-up table adopted to handle the nonlinear variation property of supercritical carbon dioxide near the critical point. The results show that the performance of the design point of the designed axial compressor matches the primary target. Small corner separation occurs near the hub, and the flow motion of the tip leakage fluid is similar with the well-studied air compressor. Violent property variation near the critical point creates troubles for convergence near the stall condition, and the stall mechanism predictions are more difficult for the axial supercritical carbon dioxide compressor.


Author(s):  
Byeung Jun Lim ◽  
Tae Choon Park ◽  
Young Seok Kang

In this study, characteristics of stall inception in a single-stage transonic axial compressor with circumferential grooves casing treatment were investigated experimentally. Additionally, the characteristic of increasing irregularity in the pressure inside circumferential grooves as the compressor approaches the stall limit was applied to the stall warning method. Spike-type rotating stall was observed in the single-stage transonic axial compressor with smooth casing. When circumferential grooves were applied, the stall inception was suppressed and the operating point of the compressor moved to lower flow rate than the stall limit. A spike-like disturbance was developed into a rotating stall cell and then the Helmholtz perturbation was overlapped on it at N = 80%. At N = 70 %, the Helmholtz perturbation was observed first and the amplitude of the wave gradually increased as mass flow rate decreased. At N = 60%, spike type stall inceptions were observed intermittently and then developed into continuous rotating stall at lower mass flow rate. Pressure measured at the bottom of circumferential grooves showed that the level of irregularity of pressure increased as flow rate decreased. Based on the characteristic of increasing irregularity of the pressure signals inside the circumferential grooves as stall approaches, an autocorrelation technique was applied to the stall warning. This technique could be used to provide warning against stall and estimate real-time stall margins in compressors with casing treatments.


Author(s):  
Xingyun Jia ◽  
Liguo Wang ◽  
Qun Zheng ◽  
Hai Zhang ◽  
Yuting Jiang

Performance of generic rim seal configurations, axial-clearance rim seal (ACS), radial-clearance rim seal (RCS), radial-axial clearance rim seal (RACS) are compared under realistic working conditions. Conjugate heat transfer analysis on rim seal is performed in this paper to understand the impact of ingestion on disc temperature. Results show that seal effectiveness and cooling effectiveness of RACS are the best when compared with ACS and RCS, the minimum mass flow rate for seal of RACS is 75% of that of RCS, and 34.6% of ACS. Authors compare the disc temperature distribution between different generic rim seal configurations where the RACS seems to be favorable in terms of low disc temperature. In addition, RACS has higher air-cooled aerodynamic efficiency, minimizing the mainstream performance penalty when compared with ACS and RCS. Corresponding to the respective minimum mass flow rate for seal, the air-cooled aerodynamic efficiency of RACS is 23.71% higher than that of ACS, and 12.79% higher than the RCS.


Author(s):  
M. K. Mittal ◽  
R. Kumar ◽  
A. Gupta

The objective of this study is to investigate the effect of coiling on the flow characteristics of R-407C in an adiabatic spiral capillary tube. The characteristic coiling parameter for a spiral capillary tube is the coil pitch; hence, the effect of the coil pitch on the mass flow rate of R-407C was studied on several capillary tube test sections. It was observed that the coiling of the capillary tube significantly reduced the mass flow rate of R-407C in the adiabatic spiral capillary tube. In order to quantify the effect of coiling, the experiments were also conducted for straight a capillary tube, and it was observed that the coiling of the capillary tube reduced the mass flow rate in the spiral tube in the range of 9–18% as compared with that in the straight capillary tube. A generalized nondimensional correlation for the prediction of the mass flow rates of various refrigerants was developed for the straight capillary tube on the basis of the experimental data of R-407C of the present study, and the data of R-134a, R-22, and R-410A measured by other researchers. Additionally, a refrigerant-specific correlation for the spiral capillary was also proposed on the basis of the experimental data of R-407C of the present study.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Clifford K. Ho ◽  
Joshua M. Christian ◽  
Julius E. Yellowhair ◽  
Kenneth Armijo ◽  
William J. Kolb ◽  
...  

This paper evaluates the on-sun performance of a 1 MW falling particle receiver. Two particle receiver designs were investigated: obstructed flow particle receiver versus free-falling particle receiver. The intent of the tests was to investigate the impact of particle mass flow rate, irradiance, and particle temperature on the particle temperature rise and thermal efficiency of the receiver for each design. Results indicate that the obstructed flow design increased the residence time of the particles in the concentrated flux, thereby increasing the particle temperature and thermal efficiency for a given mass flow rate. The obstructions, a staggered array of chevron-shaped mesh structures, also provided more stability to the falling particles, which were prone to instabilities caused by convective currents in the free-fall design. Challenges encountered during the tests included nonuniform mass flow rates, wind impacts, and oxidation/deterioration of the mesh structures. Alternative materials, designs, and methods are presented to overcome these challenges.


Author(s):  
Pau Cutrina Vilalta ◽  
Hui Wan ◽  
Soumya S. Patnaik

Abstract In this paper, we use various regression models and Artificial Neural Network (ANN) to predict the centrifugal compressor performance map. Particularly, we study the accuracy and efficiency of Gaussian Process Regression (GPR) and Artificial Neural Networks in modelling the pressure ratio, given the mass flow rate and rotational speed of a centrifugal compressor. Preliminary results show that both GPR and ANN can predict the compressor performance map well, for both interpolation and extrapolation. We also study the data augmentation and data minimzation effects using the GPR. Due to the inherent pressure ratio data distribution in mass-flow-rate and rotational-speed space, data augmentation in the rotational speed is more effective to improve the ANN performance than the mass flow rate data augmentation.


Sign in / Sign up

Export Citation Format

Share Document