scholarly journals Multiallelic, Targeted Mutagenesis of Magnesium Chelatase With CRISPR/Cas9 Provides a Rapidly Scorable Phenotype in Highly Polyploid Sugarcane

2021 ◽  
Vol 3 ◽  
Author(s):  
Ayman Eid ◽  
Chakravarthi Mohan ◽  
Sara Sanchez ◽  
Duoduo Wang ◽  
Fredy Altpeter

Genome editing with sequence-specific nucleases, such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), is revolutionizing crop improvement. Developing efficient genome-editing protocols for highly polyploid crops, including sugarcane (x = 10–13), remains challenging due to the high level of genetic redundancy in these plants. Here, we report the efficient multiallelic editing of magnesium chelatase subunit I (MgCh) in sugarcane. Magnesium chelatase is a key enzyme for chlorophyll biosynthesis. CRISPR/Cas9-mediated targeted co-mutagenesis of 49 copies/alleles of magnesium chelatase was confirmed via Sanger sequencing of cloned PCR amplicons. This resulted in severely reduced chlorophyll contents, which was scorable at the time of plant regeneration in the tissue culture. Heat treatment following the delivery of genome editing reagents elevated the editing frequency 2-fold and drastically promoted co-editing of multiple alleles, which proved necessary to create a phenotype that was visibly distinguishable from the wild type. Despite their yellow leaf color, the edited plants were established well in the soil and did not show noticeable growth retardation. This approach will facilitate the establishment of genome editing protocols for recalcitrant crops and support further optimization, including the evaluation of alternative RNA-guided nucleases to overcome the limitations of the protospacer adjacent motif (PAM) site or to develop novel delivery strategies for genome editing reagents.

2019 ◽  
Vol 10 (2) ◽  
pp. 797-810
Author(s):  
Rajdeep S. Khangura ◽  
Bala P. Venkata ◽  
Sandeep R. Marla ◽  
Michael V. Mickelbart ◽  
Singha Dhungana ◽  
...  

We previously demonstrated that maize (Zea mays) locus very oil yellow1 (vey1) encodes a putative cis-regulatory expression polymorphism at the magnesium chelatase subunit I gene (aka oil yellow1) that strongly modifies the chlorophyll content of the semi-dominant Oy1-N1989 mutants. The vey1 allele of Mo17 inbred line reduces chlorophyll content in the mutants leading to reduced photosynthetic output. Oy1-N1989 mutants in B73 reached reproductive maturity four days later than wild-type siblings. Enhancement of Oy1-N1989 by the Mo17 allele at the vey1 QTL delayed maturity further, resulting in detection of a flowering time QTL in two bi-parental mapping populations crossed to Oy1-N1989. The near isogenic lines of B73 harboring the vey1 allele from Mo17 delayed flowering of Oy1-N1989 mutants by twelve days. Just as previously observed for chlorophyll content, vey1 had no effect on reproductive maturity in the absence of the Oy1-N1989 allele. Loss of chlorophyll biosynthesis in Oy1-N1989 mutants and enhancement by vey1 reduced CO2 assimilation. We attempted to separate the effects of photosynthesis on the induction of flowering from a possible impact of chlorophyll metabolites and retrograde signaling by manually reducing leaf area. Removal of leaves, independent of the Oy1-N1989 mutant, delayed flowering but surprisingly reduced chlorophyll contents of emerging leaves. Thus, defoliation did not completely separate the identity of the signal(s) that regulates flowering time from changes in chlorophyll content in the foliage. These findings illustrate the necessity to explore the linkage between metabolism and the mechanisms that connect it to flowering time regulation.


2019 ◽  
Vol 20 (16) ◽  
pp. 4045 ◽  
Author(s):  
Ali Razzaq ◽  
Fozia Saleem ◽  
Mehak Kanwal ◽  
Ghulam Mustafa ◽  
Sumaira Yousaf ◽  
...  

Increasing agricultural productivity via modern breeding strategies is of prime interest to attain global food security. An array of biotic and abiotic stressors affect productivity as well as the quality of crop plants, and it is a primary need to develop crops with improved adaptability, high productivity, and resilience against these biotic/abiotic stressors. Conventional approaches to genetic engineering involve tedious procedures. State-of-the-art OMICS approaches reinforced with next-generation sequencing and the latest developments in genome editing tools have paved the way for targeted mutagenesis, opening new horizons for precise genome engineering. Various genome editing tools such as transcription activator-like effector nucleases (TALENs), zinc-finger nucleases (ZFNs), and meganucleases (MNs) have enabled plant scientists to manipulate desired genes in crop plants. However, these approaches are expensive and laborious involving complex procedures for successful editing. Conversely, CRISPR/Cas9 is an entrancing, easy-to-design, cost-effective, and versatile tool for precise and efficient plant genome editing. In recent years, the CRISPR/Cas9 system has emerged as a powerful tool for targeted mutagenesis, including single base substitution, multiplex gene editing, gene knockouts, and regulation of gene transcription in plants. Thus, CRISPR/Cas9-based genome editing has demonstrated great potential for crop improvement but regulation of genome-edited crops is still in its infancy. Here, we extensively reviewed the availability of CRISPR/Cas9 genome editing tools for plant biotechnologists to target desired genes and its vast applications in crop breeding research.


2020 ◽  
Author(s):  
Rajdeep S. Khangura ◽  
Gurmukh S. Johal ◽  
Brian P. Dilkes

AbstractChlorophyll is a tetrapyrrole metabolite essential for photosynthesis in plants. The oil yellow1 (oy1) gene of maize encodes subunit I of Magnesium chelatase, the enzyme catalyzing the first committed step of chlorophyll biosynthesis. A range of chlorophyll contents and net CO2 assimilation rates can be achieved in maize by combining a semi-dominant mutant allele, Oy1-N1989, and cis-regulatory alleles encoded by the Mo17 inbred called very oil yellow1 (vey1). We previously demonstrated that these allelic interactions can delay reproductive maturity. In this study, we demonstrate that multiple gross morphological traits respond to a reduction in chlorophyll. We found that stalk width, number of lateral branches (tillers), and branching of the inflorescence decline with a decrease in chlorophyll level. Chlorophyll variation suppressed tillering in multiple maize mutants including teosinte branched1, grassy tiller1, and Tillering1 as well as the tiller number1 QTL responsible for tillering in many sweet corn varieties. In contrast to these traits, plant height showed a non-linear response to chlorophyll levels. Weak suppression of Oy1-N1989 by vey1B73 resulted in a significant increase in mutant plant height. This was true in multiple mapping populations, isogenic inbreds, and hybrid backgrounds. Enhancement of the Oy1-N1989 mutants by the vey1Mo17 allele reduced chlorophyll contents and plant height in mapping populations and isogenic inbred background. We demonstrate that the effects of reduced chlorophyll content on plant growth and development are complex and that the genetic relationship depends on the trait. We propose that growth control for branching and architecture are downstream of energy balance sensing.


2021 ◽  
Author(s):  
Florian Hahn ◽  
Laura Sanjurjo Loures ◽  
Caroline A. Sparks ◽  
Kostya Kanyuka ◽  
Vladimir Nekrasov

The CRISPR/Cas technology has recently become a molecular tool of choice for gene function studies in plants as well as crop improvement. Wheat is a globally important staple crop with a well annotated genome and there is plenty of scope for improving its agriculturally important traits using genome editing technologies, such as CRISPR/Cas. As part of this study we targeted three different genes in hexaploid wheat Triticum aestivum: TaBAK1-2 in the spring cultivar Cadenza as well as Ta-eIF4E and Ta-eIF(iso)4E in winter cultivars Cezanne, Goncourt and Prevert. The primary transgenic lines carrying CRISPR/Cas-induced indels were successfully generated for all targeted genes. As winter wheat varieties are generally less amenable to genetic transformation, the successful experimental methodology for transformation and genome editing in winter wheat presented in this study will be of interest to the research community working with this crop.


2021 ◽  
Vol 19 (1) ◽  
pp. 15-40
Author(s):  
Nguyen Duc Thanh

Genome editing technology is the genome modification techniques, such as targeted mutagenesis or insert/delete/replacement at specific locations in the genome of living organisms. Genome editing is based on the creation of double sequence break (DSB) in a specific location and DNA repair via nonhomologous end joining (NHEJ) or homology direct repair (HDR). The development of sequence-specific nuclease (SSN) allows precise editing of the target gene. These SSNs include: meganuclease (MN), zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN) and CRISPR-associated nuclease (Cas) including CRISPR/Cas9 (from Streptococcus pyogenes) and CRISPR/Cpf1 (from Prevoltella and Francisella1). These are the genome editing tools used to create DSBs at specific locations of the genome. Recently, the base editing (BE) and prime editing (PE) tools have been reported. This review will cover the basics of these tools and their application in genome editing in plants, especially providing the most up-to-date information on their application in crop improvement.


2019 ◽  
Vol 20 (5) ◽  
pp. 1155 ◽  
Author(s):  
Guillaume Bernard ◽  
David Gagneul ◽  
Harmony Alves Dos Santos ◽  
Audrey Etienne ◽  
Jean-Louis Hilbert ◽  
...  

CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated with protein CAS9) is a genome-editing tool that has been extensively used in the last five years because of its novelty, affordability, and feasibility. This technology has been developed in many plant species for gene function analysis and crop improvement but has never been used in chicory (Cichorium intybus L.). In this study, we successfully applied CRISPR/Cas9-mediated targeted mutagenesis to chicory using Agrobacterium rhizogenes-mediated transformation and protoplast transfection methods. A U6 promoter (CiU6-1p) among eight predicted U6 promoters in chicory was selected to drive sgRNA expression. A binary vector designed to induce targeted mutations in the fifth exon of the chicory phytoene desaturase gene (CiPDS) was then constructed and used to transform chicory. The mutation frequency was 4.5% with the protoplast transient expression system and 31.25% with A. rhizogenes-mediated stable transformation. Biallelic mutations were detected in all the mutant plants. The use of A. rhizogenes-mediated transformation seems preferable as the regeneration of plants is faster and the mutation frequency was shown to be higher. With both transformation methods, foreign DNA was integrated in the plant genome. Hence, selection of vector (transgene)-free segregants is required. Our results showed that genome editing with CRISPR/Cas9 system can be efficiently used with chicory, which should facilitate and accelerate genetic improvement and functional biology.


2019 ◽  
Author(s):  
Cassidy Petree ◽  
Gaurav K Varshney

AbstractThe powerful and simple RNA-guided CRISPR/Cas9 technology is a versatile genome editing tool that has revolutionized targeted mutagenesis. CRISPR-based genome editing has enabled large-scale functional genetic studies through the generation of gene knockouts in a variety of model organisms including zebrafish. CRISPR/Cas9 can also be used to target multiple genes simultaneously. One of the challenges associated with applying this technique to zebrafish in a high-throughput manner is the absence of a cost-effective method by which to identify mutants. To address this, we optimized the high-throughput, high-resolution fluorescent PCR-based fragment analysis method to develop MultiFRAGing, a robust and cost-effective method for genotyping of multiple targets in a single reaction. Our approach can identify indels in 4 targets from a single reaction, which represents a four-fold increase in genotyping throughput. This method can be used by any laboratory with access to capillary electrophoresis based sequencing equipment.


Author(s):  
Jan G. Schaart ◽  
Clemens C. M. van de Wiel ◽  
Marinus J. M. Smulders

AbstractPlant breeding aims to develop improved crop varieties. Many crops have a polyploid and often highly heterozygous genome, which may make breeding of polyploid crops a real challenge. The efficiency of traditional breeding based on crossing and selection has been improved by using marker-assisted selection (MAS), and MAS is also being applied in polyploid crops, which helps e.g. for introgression breeding. However, methods such as random mutation breeding are difficult to apply in polyploid crops because there are multiple homoeologous copies (alleles) of each gene. Genome editing technology has revolutionized mutagenesis as it enables precisely selecting targets. The genome editing tool CRISPR/Cas is especially valuable for targeted mutagenesis in polyploids, as all alleles and/or copies of a gene can be targeted at once. Even multiple genes, each with multiple alleles, may be targeted simultaneously. In addition to targeted mutagenesis, targeted replacement of undesirable alleles by desired ones may become a promising application of genome editing for the improvement of polyploid crops, in the near future. Several examples of the application of genome editing for targeted mutagenesis are described here for a range of polyploid crops, and achievements and bottlenecks are highlighted.


2019 ◽  
Author(s):  
Rajdeep S. Khangura ◽  
Bala P. Venkata ◽  
Sandeep R. Marla ◽  
Michael V. Mickelbart ◽  
Singha Dhungana ◽  
...  

AbstractWe previously demonstrated that maize (Zea mays) locusvery oil yellow1 (vey1)encodes a putative cis-regulatory expression polymorphism at the magnesium chelatase subunit I gene (akaoil yellow1) that strongly modifies the chlorophyll content of the semi-dominantOy1-N1989mutants. Thevey1allele of Mo17 inbred line reduces chlorophyll content in the mutants leading to reduced photosynthetic output.Oy1-N1989mutants in B73 reached reproductive maturity four days later than wild-type siblings. Enhancement ofOy1-N1989by the Mo17 allele at thevey1QTL delayed maturity further, resulting in detection of a flowering time QTL in two bi-parental mapping populations crossed toOy1-N1989. The near isogenic lines of B73 harboring thevey1allele from Mo17 delayed flowering ofOy1-N1989mutants by twelve days. Just as previously observed for chlorophyll content,vey1had no effect on reproductive maturity in the absence of theOy1-N1989allele. Loss of chlorophyll biosynthesis inOy1-N1989mutants and enhancement byvey1reduced CO2assimilation. We attempted to separate the effects of photosynthesis on the induction of flowering from a possible impact of chlorophyll metabolites and retrograde signaling by manually reducing leaf area. Removal of leaves, independent of theOy1-N1989mutant, delayed flowering but surprisingly reduced chlorophyll contents of emerging leaves. Thus, defoliation did not completely separate the identity of the signal(s) that regulates flowering time from changes in chlorophyll content in the foliage. These findings illustrate the necessity to explore the linkage between metabolism and the mechanisms that connect it to flowering time regulation.


Sign in / Sign up

Export Citation Format

Share Document