scholarly journals Genome-Wide Association Study of Maize Aboveground Dry Matter Accumulation at Seedling Stage

2021 ◽  
Vol 11 ◽  
Author(s):  
Xianju Lu ◽  
Jinglu Wang ◽  
Yongjian Wang ◽  
Weiliang Wen ◽  
Ying Zhang ◽  
...  

Dry matter accumulation and partitioning during the early phases of development could significantly affect crop growth and productivity. In this study, the aboveground dry matter (DM), the DM of different organs, and partition coefficients of a maize association mapping panel of 412 inbred lines were evaluated at the third and sixth leaf stages (V3 and V6). Further, the properties of these phenotypic traits were analyzed. Genome-wide association studies (GWAS) were conducted on the total aboveground biomass and the DM of different organs. Analysis of GWAS results identified a total of 1,103 unique candidate genes annotated by 678 significant SNPs (P value < 1.28e–6). A total of 224 genes annotated by SNPs at the top five of each GWAS method and detected by multiple GWAS methods were regarded as having high reliability. Pathway enrichment analysis was also performed to explore the biological significance and functions of these candidate genes. Several biological pathways related to the regulation of seed growth, gibberellin-mediated signaling pathway, and long-day photoperiodism were enriched. The results of our study could provide new perspectives on breeding high-yielding maize varieties.

2020 ◽  
Vol 24 (8) ◽  
pp. 836-843
Author(s):  
A. Y. Krivoruchko ◽  
O. A. Yatsyk ◽  
E. Y. Safaryan

Genome-wide association studies allow identification of loci and polymorphisms associated with the formation of relevant phenotypes. When conducting a full genome analysis of sheep, particularly promising is the study of individuals with outstanding productivity indicators – exhibition animals, representatives of the super-elite class. The aim of this study was to identify new candidate genes for economically valuable traits based on the search for single nucleotide polymorphisms (SNPs) associated with belonging to different evaluation classes in rams of the Russian meat merino breed. Animal genotyping was performed using Ovine Infinium HD BeadChip 600K DNA, association search was performed using PLINK v. 1.07 software. Highly reliable associations were found between animals belonging to different evaluation classes and the frequency of occurrence of individual SNPs on chromosomes 2, 6, 10, 13, and 20. Most of the substitutions with high association reliability are concentrated on chromosome 10 in the region 10: 30859297–31873769. To search for candidate genes, 15 polymorphisms with the highest association reliability were selected (–log10(р) > 9). Determining the location of the analyzed SNPs relative to the latest annotation Oar_rambouillet_v1.0 allowed to identify 11 candidate genes presumably associated with the formation of a complex of phenotypic traits of animals in the exhibition group: RXFP2, ALOX5AP, MEDAG, OPN5, PRDM5, PTPRT, TRNAS-GGA, EEF1A1, FRY, ZBTB21-like, and B3GLCT-like. The listed genes encode proteins involved in the control of the cell cycle and DNA replication, regulation of cell proliferation and apoptosis, lipid and carbohydrate metabolism, the development of the inflammatory process and the work of circadian rhythms. Thus, the candidate genes under consideration can influence the formation of exterior features and productive qualities of sheep. However, further research is needed to confirm the influence of genes and determine the exact mechanisms for implementing this influence on the phenotype.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 806
Author(s):  
Yang Li ◽  
Lei Pu ◽  
Liangyu Shi ◽  
Hongding Gao ◽  
Pengfei Zhang ◽  
...  

The number of teats is related to the nursing ability of sows. In the present study, we conducted genome-wide association studies (GWAS) for traits related to teat number in Duroc pig population. Two mixed models, one for counted and another for binary phenotypic traits, were employed to analyze seven traits: the right (RTN), left (LTN), and total (TTN) teat numbers; maximum teat number on a side (MAX); left minus right side teat number (LR); the absolute value of LR (ALR); and the presence of symmetry between left and right teat numbers (SLR). We identified 11, 1, 4, 13, and 9 significant SNPs associated with traits RTN, LTN, MAX, TTN, and SLR, respectively. One significant SNP (MARC0038565) was found to be simultaneous associated with RTN, LTN, MAX and TTN. Two annotated genes (VRTN and SYNDIG1L) were located in genomic region around this SNP. Three significant SNPs were shown to be associated with TTN, RTN and MAX traits. Seven significant SNPs were simultaneously detected in two traits of TTN and RTN. Other two SNPs were only identified in TTN. These 13 SNPs were clustered in the genomic region between 96.10—98.09 Mb on chromosome 7. Moreover, nine significant SNPs were shown to be significantly associated with SLR. In total, four and 22 SNPs surpassed genome-wide significance and suggestive significance levels, respectively. Among candidate genes annotated, eight genes have documented association with the teat number relevant traits. Out of them, DPF3 genes on Sus scrofa chromosome (SSC) 7 and the NRP1 gene on SSC 10 were new candidate genes identified in this study. Our findings demonstrate the genetic mechanism of teat number relevant traits and provide a reference to further improve reproductive performances in practical pig breeding programs.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shenping Zhou ◽  
Rongrong Ding ◽  
Fanming Meng ◽  
Xingwang Wang ◽  
Zhanwei Zhuang ◽  
...  

Abstract Background Average daily gain (ADG) and lean meat percentage (LMP) are the main production performance indicators of pigs. Nevertheless, the genetic architecture of ADG and LMP is still elusive. Here, we conducted genome-wide association studies (GWAS) and meta-analysis for ADG and LMP in 3770 American and 2090 Canadian Duroc pigs. Results In the American Duroc pigs, one novel pleiotropic quantitative trait locus (QTL) on Sus scrofa chromosome 1 (SSC1) was identified to be associated with ADG and LMP, which spans 2.53 Mb (from 159.66 to 162.19 Mb). In the Canadian Duroc pigs, two novel QTLs on SSC1 were detected for LMP, which were situated in 3.86 Mb (from 157.99 to 161.85 Mb) and 555 kb (from 37.63 to 38.19 Mb) regions. The meta-analysis identified ten and 20 additional SNPs for ADG and LMP, respectively. Finally, four genes (PHLPP1, STC1, DYRK1B, and PIK3C2A) were detected to be associated with ADG and/or LMP. Further bioinformatics analysis showed that the candidate genes for ADG are mainly involved in bone growth and development, whereas the candidate genes for LMP mainly participated in adipose tissue and muscle tissue growth and development. Conclusions We performed GWAS and meta-analysis for ADG and LMP based on a large sample size consisting of two Duroc pig populations. One pleiotropic QTL that shared a 2.19 Mb haplotype block from 159.66 to 161.85 Mb on SSC1 was found to affect ADG and LMP in the two Duroc pig populations. Furthermore, the combination of single-population and meta-analysis of GWAS improved the efficiency of detecting additional SNPs for the analyzed traits. Our results provide new insights into the genetic architecture of ADG and LMP traits in pigs. Moreover, some significant SNPs associated with ADG and/or LMP in this study may be useful for marker-assisted selection in pig breeding.


2018 ◽  
Author(s):  
Zhou Shaoqun ◽  
Karl A. Kremling ◽  
Bandillo Nonoy ◽  
Richter Annett ◽  
Ying K. Zhang ◽  
...  

One Sentence SummaryHPLC-MS metabolite profiling of maize seedlings, in combination with genome-wide association studies, identifies numerous quantitative trait loci that influence the accumulation of foliar metabolites.AbstractCultivated maize (Zea mays) retains much of the genetic and metabolic diversity of its wild ancestors. Non-targeted HPLC-MS metabolomics using a diverse panel of 264 maize inbred lines identified a bimodal distribution in the prevalence of foliar metabolites. Although 15% of the detected mass features were present in >90% of the inbred lines, the majority were found in <50% of the samples. Whereas leaf bases and tips were differentiated primarily by flavonoid abundance, maize varieties (stiff-stalk, non-stiff-stalk, tropical, sweet corn, and popcorn) were differentiated predominantly by benzoxazinoid metabolites. Genome-wide association studies (GWAS), performed for 3,991 mass features from the leaf tips and leaf bases, showed that 90% have multiple significantly associated loci scattered across the genome. Several quantitative trait locus hotspots in the maize genome regulate the abundance of multiple, often metabolically related mass features. The utility of maize metabolite GWAS was demonstrated by confirming known benzoxazinoid biosynthesis genes, as well as by mapping isomeric variation in the accumulation of phenylpropanoid hydroxycitric acid esters to a single linkage block in a citrate synthase-like gene. Similar to gene expression databases, this metabolomic GWAS dataset constitutes an important public resource for linking maize metabolites with biosynthetic and regulatory genes.


2020 ◽  
Author(s):  
Yanjiao Jin ◽  
Jie Yang ◽  
Shuyue Zhang ◽  
Jin Li ◽  
Songlin Wang

Abstract Background: Oral diseases impact the majority of the world’s population. The following traits are common in oral inflammatory diseases: mouth ulcers, painful gums, bleeding gums, loose teeth, and toothache. Despite the prevalence of genome-wide association studies, the associations between these traits and common genomic variants, and whether pleiotropic loci are shared by some of these traits remain poorly understood. Methods: In this work, we conducted multi-trait joint analyses based on the summary statistics of genome-wide association studies of these five oral inflammatory traits from the UK Biobank, each of which is comprised of over 10,000 cases and over 300,000 controls. We estimated the genetic correlations between the five traits. We conducted fine-mapping and functional annotation based on multi-omics data to better understand the biological functions of the potential causal variants at each locus. To identify the pathways in which the candidate genes were mainly involved, we applied gene-set enrichment analysis, and further performed protein-protein interaction (PPI) analyses.Results: We identified 39 association signals that surpassed genome-wide significance, including three that were shared between two or more oral inflammatory traits, consistent with a strong correlation. Among these genome-wide significant loci, two were novel for both painful gums and toothache. We performed fine-mapping and identified causal variants at each novel locus. Further functional annotation based on multi-omics data suggested IL10 and IL12A/TRIM59 as potential candidate genes at the novel pleiotropic loci, respectively. Subsequent analyses of pathway enrichment and protein-protein interaction networks suggested the involvement of candidate genes at genome-wide significant loci in immune regulation.Conclusions: Our results highlighted the importance of immune regulation in the pathogenesis of oral inflammatory diseases. Some common immune-related pleiotropic loci or genetic variants are shared by multiple oral inflammatory traits. These findings will be beneficial for risk prediction, prevention, and therapy of oral inflammatory diseases.


2021 ◽  
Author(s):  
Dev Paudel ◽  
Rocheteau Dareus ◽  
Julia Rosenwald ◽  
Maria Munoz-Amatriain ◽  
Esteban Rios

Cowpea (Vigna unguiculata [L.] Walp., diploid, 2n = 22) is a major crop used as a protein source for human consumption as well as a quality feed for livestock. It is drought and heat tolerant and has been bred to develop varieties that are resilient to changing climates. Plant adaptation to new climates and their yield are strongly affected by flowering time. Therefore, understanding the genetic basis of flowering time is critical to advance cowpea breeding. The aim of this study was to perform genome-wide association studies (GWAS) to identify marker trait associations for flowering time in cowpea using single nucleotide polymorphism (SNP) markers. A total of 367 accessions from a cowpea mini-core collection were evaluated in Ft. Collins, CO in 2019 and 2020, and 292 accessions were evaluated in Citra, FL in 2018. These accessions were genotyped using the Cowpea iSelect Consortium Array that contained 51,128 SNPs. GWAS revealed seven reliable SNPs for flowering time that explained 8-12% of the phenotypic variance. Candidate genes including FT, GI, CRY2, LSH3, UGT87A2, LIF2, and HTA9 that are associated with flowering time were identified for the significant SNP markers. Further efforts to validate these loci will help to understand their role in flowering time in cowpea, and it could facilitate the transfer of some of this knowledge to other closely related legume species.


2020 ◽  
Vol 26 (5) ◽  
pp. 490-500
Author(s):  
A. O. Konradi

The article reviews monogenic forms of hypertension, data on the role of heredity of essential hypertension and candidate genes, as well as genome-wide association studies. Modern approach for the role of genetics is driven by implementation of new technologies and their productivity. High performance speed of new technologies like genome-wide association studies provide data for better knowledge of genetic markers of hypertension. The major goal nowadays for research is to reveal molecular pathways of blood pressure regulation, which can help to move from populational to individual level of understanding of pathogenesis and treatment targets.


2018 ◽  
Vol 19 (9) ◽  
pp. 2794 ◽  
Author(s):  
Rong Zhou ◽  
Komivi Dossa ◽  
Donghua Li ◽  
Jingyin Yu ◽  
Jun You ◽  
...  

Sesame is poised to become a major oilseed crop owing to its high oil quality and adaptation to various ecological areas. However, the seed yield of sesame is very low and the underlying genetic basis is still elusive. Here, we performed genome-wide association studies of 39 seed yield-related traits categorized into five major trait groups, in three different environments, using 705 diverse lines. Extensive variation was observed for the traits with capsule size, capsule number and seed size-related traits, found to be highly correlated with seed yield indexes. In total, 646 loci were significantly associated with the 39 traits (p < 10−7) and resolved to 547 quantitative trait loci QTLs. We identified six multi-environment QTLs and 76 pleiotropic QTLs associated with two to five different traits. By analyzing the candidate genes for the assayed traits, we retrieved 48 potential genes containing significant functional loci. Several homologs of these candidate genes in Arabidopsis are described to be involved in seed or biomass formation. However, we also identified novel candidate genes, such as SiLPT3 and SiACS8, which may control capsule length and capsule number traits. Altogether, we provided the highly-anticipated basis for research on genetics and functional genomics towards seed yield improvement in sesame.


2019 ◽  
Vol 136 (5) ◽  
pp. 362-370 ◽  
Author(s):  
Tongyu Zhang ◽  
Hongding Gao ◽  
Goutam Sahana ◽  
Yanjun Zan ◽  
Hongying Fan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document