scholarly journals Epigenetic Regulation of Genomic Stability by Vitamin C

2021 ◽  
Vol 12 ◽  
Author(s):  
John P. Brabson ◽  
Tiffany Leesang ◽  
Sofia Mohammad ◽  
Luisa Cimmino

DNA methylation plays an important role in the maintenance of genomic stability. Ten-eleven translocation proteins (TETs) are a family of iron (Fe2+) and α-KG -dependent dioxygenases that regulate DNA methylation levels by oxidizing 5-methylcystosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). These oxidized methylcytosines promote passive demethylation upon DNA replication, or active DNA demethylation, by triggering base excision repair and replacement of 5fC and 5caC with an unmethylated cytosine. Several studies over the last decade have shown that loss of TET function leads to DNA hypermethylation and increased genomic instability. Vitamin C, a cofactor of TET enzymes, increases 5hmC formation and promotes DNA demethylation, suggesting that this essential vitamin, in addition to its antioxidant properties, can also directly influence genomic stability. This review will highlight the functional role of DNA methylation, TET activity and vitamin C, in the crosstalk between DNA methylation and DNA repair.

2019 ◽  
Vol 20 (19) ◽  
pp. 4683 ◽  
Author(s):  
Jara Teresa Parrilla-Doblas ◽  
Teresa Roldán-Arjona ◽  
Rafael R. Ariza ◽  
Dolores Córdoba-Cañero

Methylation of cytosine (5-meC) is a critical epigenetic modification in many eukaryotes, and genomic DNA methylation landscapes are dynamically regulated by opposed methylation and demethylation processes. Plants are unique in possessing a mechanism for active DNA demethylation involving DNA glycosylases that excise 5-meC and initiate its replacement with unmodified C through a base excision repair (BER) pathway. Plant BER-mediated DNA demethylation is a complex process involving numerous proteins, as well as additional regulatory factors that avoid accumulation of potentially harmful intermediates and coordinate demethylation and methylation to maintain balanced yet flexible DNA methylation patterns. Active DNA demethylation counteracts excessive methylation at transposable elements (TEs), mainly in euchromatic regions, and one of its major functions is to avoid methylation spreading to nearby genes. It is also involved in transcriptional activation of TEs and TE-derived sequences in companion cells of male and female gametophytes, which reinforces transposon silencing in gametes and also contributes to gene imprinting in the endosperm. Plant 5-meC DNA glycosylases are additionally involved in many other physiological processes, including seed development and germination, fruit ripening, and plant responses to a variety of biotic and abiotic environmental stimuli.


Author(s):  
Pan Liu ◽  
Wen-Feng Nie ◽  
Xiansong Xiong ◽  
Yuhua Wang ◽  
Yuwei Jiang ◽  
...  

SUMMARYActive DNA demethylation is critical for altering DNA methylation patterns and regulating gene expression. The 5-methylcytosine DNA glycosylase/lyase ROS1 initiates a base excision repair pathway for active DNA demethylation and is required for the prevention of DNA hypermethylation at thousands of genomic regions in Arabidopsis. How ROS1 is regulated and targeted to specific genomic regions is not well understood. Here, we report the discovery of an Arabidopsis protein complex that contains ROS1, regulates ROS1 gene expression, and likely targets the ROS1 protein to specific genomic regions. ROS1 physically interacts with a WD40 domain protein (RWD40), which in turn interacts with a methyl-DNA binding protein (RMB1) as well as with a zinc finger and homeobox domain protein (RHD1). RMB1 binds to DNA that is methylated in any sequence context, and this binding is necessary for its function in vivo.Loss-of-function mutations in RWD40, RMB1, or RHD1 cause DNA hypermethylation at several tested genomic regions independently of the known ROS1 regulator IDM1. Because the hypermethylated genomic regions include the DNA methylation monitoring sequence in the ROS1 promoter, plants mutated in RWD40, RMB1, or RHD1 show increased ROS1 expression. Importantly, ROS1 binding to the ROS1 promoter requires RWD40, RMB1, and RHD1, suggesting that this complex dictates ROS1 targeting to this locus. Our results demonstrate that ROS1 forms a protein complex with RWD40, RMB1, and RHD1, and that this novel complex regulates active DNA demethylation at several endogenous loci in Arabidopsis.


2011 ◽  
Vol 286 (41) ◽  
pp. 35334-35338 ◽  
Author(s):  
Atanu Maiti ◽  
Alexander C. Drohat

Thymine DNA glycosylase (TDG) excises T from G·T mispairs and is thought to initiate base excision repair (BER) of deaminated 5-methylcytosine (mC). Recent studies show that TDG, including its glycosylase activity, is essential for active DNA demethylation and embryonic development. These and other findings suggest that active demethylation could involve mC deamination by a deaminase, giving a G·T mispair followed by TDG-initiated BER. An alternative proposal is that demethylation could involve iterative oxidation of mC to 5-hydroxymethylcytosine (hmC) and then to 5-formylcytosine (fC) and 5-carboxylcytosine (caC), mediated by a Tet (ten eleven translocation) enzyme, with conversion of caC to C by a putative decarboxylase. Our previous studies suggest that TDG could excise fC and caC from DNA, which could provide another potential demethylation mechanism. We show here that TDG rapidly removes fC, with higher activity than for G·T mispairs, and has substantial caC excision activity, yet it cannot remove hmC. TDG excision of fC and caC, oxidation products of mC, is consistent with its strong specificity for excising bases from a CpG context. Our findings reveal a remarkable new aspect of specificity for TDG, inform its catalytic mechanism, and suggest that TDG could protect against fC-induced mutagenesis. The results also suggest a new potential mechanism for active DNA demethylation, involving TDG excision of Tet-produced fC (or caC) and subsequent BER. Such a mechanism obviates the need for a decarboxylase and is consistent with findings that TDG glycosylase activity is essential for active demethylation and embryonic development, as are mechanisms involving TDG excision of deaminated mC or hmC.


2021 ◽  
Vol 5 (1) ◽  
pp. e202101228
Author(s):  
Xiaokang Wang ◽  
Wojciech Rosikiewicz ◽  
Yurii Sedkov ◽  
Tanner Martinez ◽  
Baranda S Hansen ◽  
...  

DNA methylation at enhancers and CpG islands usually leads to gene repression, which is counteracted by DNA demethylation through the TET protein family. However, how TET enzymes are recruited and regulated at these genomic loci is not fully understood. Here, we identify TET2, the glycosyltransferase OGT and a previously undescribed proline and serine rich protein, PROSER1 as interactors of UTX, a component of the enhancer-associated MLL3/4 complexes. We find that PROSER1 mediates the interaction between OGT and TET2, thus promoting TET2 O-GlcNAcylation and protein stability. In addition, PROSER1, UTX, TET1/2, and OGT colocalize on many genomic elements genome-wide. Loss of PROSER1 results in lower enrichment of UTX, TET1/2, and OGT at enhancers and CpG islands, with a concomitant increase in DNA methylation and transcriptional down-regulation of associated target genes and increased DNA hypermethylation encroachment at H3K4me1-predisposed CpG islands. Furthermore, we provide evidence that PROSER1 acts as a more general regulator of OGT activity by controlling O-GlcNAcylation of multiple other chromatin signaling pathways. Taken together, this study describes for the first time a regulator of TET2 O-GlcNAcylation and its implications in mediating DNA demethylation at UTX-dependent enhancers and CpG islands and supports an important role for PROSER1 in regulating the function of various chromatin-associated proteins via OGT-mediated O-GlcNAcylation.


2020 ◽  
Author(s):  
Xiangfeng Kong ◽  
Yechun Hong ◽  
Yi-Feng Hsu ◽  
Huan Huang ◽  
Xue Liu ◽  
...  

AbstractThe 5-methylcytosine DNA glycosylase/lyase REPRESSOR OF SILENCING 1 (ROS1)-mediated active DNA demethylation is critical for shaping the genomic DNA methylation landscape in Arabidopsis. Whether and how the stability of ROS1 may be regulated by post-translational modifications is unknown. Using a methylation-sensitive PCR (CHOP-PCR)-based forward genetic screen for Arabidopsis DNA hypermethylation mutants, we identified the SUMO E3 ligase SIZ1 as a critical regulator of active DNA demethylation. Dysfunction of SIZ1 leads to hyper-methylation at approximately one thousand genomic regions. SIZ1 physically interacts with ROS1 and mediates the SUMOylation of ROS1. The SUMOylation of ROS1 is reduced in siz1 mutant plants. Compared to that in wild type plants, the protein level of ROS1 is significantly decreased, even though there is an increased level of ROS1 transcripts in siz1 mutant plants. Our results suggest that SIZ1 positively regulates active DNA demethylation by promoting the stability of ROS1 protein through SUMOylation.Short SummaryThe 5-methylcytosine DNA glycosylase/lyase REPRESSOR OF SILENCING 1 (ROS1) is indispensable for proper DNA methylation landscape in Arabidopsis. Whether and how the stability of ROS1 may be regulated by post-translational modifications is unknown. Here, we show that SIZ1-mediated SUMOylation of ROS1 enhances its stability and positively regulates active DNA demethylation.


2019 ◽  
Vol 10 (11) ◽  
Author(s):  
Liyan Zhou ◽  
Meng Ren ◽  
Tingting Zeng ◽  
Wei Wang ◽  
Xiaoyi Wang ◽  
...  

Abstract Wound healing in diabetic skin is impaired by excessive activation of matrix metalloproteinase-9 (MMP-9). MMP-9 transcription is activated by Ten-eleven translocation 2 (TET2), a well-known DNA demethylation protein that induces MMP-9 promoter demethylation in diabetic skin tissues. However, how TET2 is targeted to specific loci in the MMP-9 promoter is unknown. Here, we identified a TET2-interacting long noncoding RNA (TETILA) that is upregulated in human diabetic skin tissues. TETILA regulates TET2 subcellular localization and enzymatic activity, indirectly activating MMP-9 promoter demethylation. TETILA also recruits thymine-DNA glycosylase (TDG), which simultaneously interacts with TET2, for base excision repair-mediated MMP-9 promoter demethylation. Together, our results suggest that the TETILA serves as a genomic homing signal for TET2-mediated demethylation specific loci in MMP-9 promoter, thereby disrupting the process of diabetic skin wound healing.


Sign in / Sign up

Export Citation Format

Share Document