scholarly journals Construction and Validation of an Immune Cell Signature Score to Evaluate Prognosis and Therapeutic Efficacy in Hepatocellular Carcinoma

2021 ◽  
Vol 12 ◽  
Author(s):  
Linfeng Xu ◽  
Xingxing Jian ◽  
Zhenhao Liu ◽  
Jingjing Zhao ◽  
Siwen Zhang ◽  
...  

Background: Hepatocellular carcinoma (HCC) is the most common primary liver malignancy with high morbidity and mortality worldwide. Tumor immune microenvironment (TIME) plays a pivotal role in the outcome and treatment of HCC. However, the effect of immune cell signatures (ICSs) representing the characteristics of TIME on the prognosis and therapeutic benefit of HCC patients remains to be further studied.Materials and methods: In total, the gene expression profiles of 1,447 HCC patients from several databases, i.e., The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium, and Gene Expression Omnibus, were obtained and applied. Based on a comprehensive collection of marker genes, 182 ICSs were evaluated by single sample gene set enrichment analysis. Then, by performing univariate and multivariate Cox analysis and random forest modeling, four significant signatures were selected to fit an immune cell signature score (ICSscore).Results: In this study, an ICSscore-based prognostic model was constructed to stratify HCC patients into high-risk and low-risk groups in the TCGA-LIHC cohort, which was successfully validated in two independent cohorts. Moreover, the ICSscore values were found to positively correlate with the current American Joint Committee on Cancer staging system, indicating that ICSscore could act as a comparable biomarker for HCC risk stratification. In addition, when setting the four ICSs and ICSscores as features, the classifiers can significantly distinguish treatment-responding and non-responding samples in HCC. Also, in melanoma and breast cancer, the unified ICSscore could verify samples with therapeutic benefits.Conclusion: Overall, we simplified the tedious ICS to develop the ICSscore, which can be applied successfully for prognostic stratification and therapeutic evaluation in HCC. This study provides an insight into the therapeutic predictive efficacy of prognostic ICS, and a novel ICSscore was constructed to allow future expanded application.

2020 ◽  
Vol 40 (11) ◽  
Author(s):  
Xiaofei Wang ◽  
Jie Qiao ◽  
Rongqi Wang

Abstract The present study aimed to construct a novel signature for indicating the prognostic outcomes of hepatocellular carcinoma (HCC). Gene expression profiles were downloaded from Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) databases. The prognosis-related genes with differential expression were identified with weighted gene co-expression network analysis (WGCNA), univariate analysis, the least absolute shrinkage and selection operator (LASSO). With the stepwise regression analysis, a risk score was constructed based on the expression levels of five genes: Risk score = (−0.7736* CCNB2) + (1.0083* DYNC1LI1) + (−0.6755* KIF11) + (0.9588* SPC25) + (1.5237* KIF18A), which can be applied as a signature for predicting the prognosis of HCC patients. The prediction capacity of the risk score for overall survival was validated with both TCGA and ICGC cohorts. The 1-, 3- and 5-year ROC curves were plotted, in which the AUC was 0.842, 0.726 and 0.699 in TCGA cohort and 0.734, 0.691 and 0.700 in ICGC cohort, respectively. Moreover, the expression levels of the five genes were determined in clinical tumor and normal specimens with immunohistochemistry. The novel signature has exhibited good prediction efficacy for the overall survival of HCC patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhuomao Mo ◽  
Daiyuan Liu ◽  
Dade Rong ◽  
Shijun Zhang

Background: Generally, hepatocellular carcinoma (HCC) exists in an immunosuppressive microenvironment that promotes tumor evasion. Hypoxia can impact intercellular crosstalk in the tumor microenvironment. This study aimed to explore and elucidate the underlying relationship between hypoxia and immunotherapy in patients with HCC.Methods: HCC genomic and clinicopathological datasets were obtained from The Cancer Genome Atlas (TCGA-LIHC), Gene Expression Omnibus databases (GSE14520) and International Cancer Genome Consortium (ICGC-LIRI). The TCGA-LIHC cases were divided into clusters based on single sample gene set enrichment analysis and hierarchical clustering. After identifying patients with immunosuppressive microenvironment with different hypoxic conditions, correlations between immunological characteristics and hypoxia clusters were investigated. Subsequently, a hypoxia-associated score was established by differential expression, univariable Cox regression, and lasso regression analyses. The score was verified by survival and receiver operating characteristic curve analyses. The GSE14520 cohort was used to validate the findings of immune cell infiltration and immune checkpoints expression, while the ICGC-LIRI cohort was employed to verify the hypoxia-associated score.Results: We identified hypoxic patients with immunosuppressive HCC. This cluster exhibited higher immune cell infiltration and immune checkpoint expression in the TCGA cohort, while similar significant differences were observed in the GEO cohort. The hypoxia-associated score was composed of five genes (ephrin A3, dihydropyrimidinase like 4, solute carrier family 2 member 5, stanniocalcin 2, and lysyl oxidase). In both two cohorts, survival analysis revealed significant differences between the high-risk and low-risk groups. In addition, compared to other clinical parameters, the established score had the highest predictive performance at both 3 and 5 years in two cohorts.Conclusion: This study provides further evidence of the link between hypoxic signals in patients and immunosuppression in HCC. Defining hypoxia-associated HCC subtypes may help reveal potential regulatory mechanisms between hypoxia and the immunosuppressive microenvironment, and our hypoxia-associated score could exhibit potential implications for future predictive models.


2020 ◽  
Author(s):  
Baohui Zhang ◽  
Bufu Tang ◽  
Jianyao Gao ◽  
Jiatong Li ◽  
Lingming Kong ◽  
...  

Abstract Background Hypoxia plays an indispensable role in the development of hepatocellular carcinoma (HCC). However, there are few studies on the application of hypoxia molecules in the prognosis predicting of HCC. We aimed to identify the hypoxia-related genes in HCC and construct reliable models for diagnosis, prognosis and recurrence of HCC patients as well as exploring the potential mechanism.Methods Differentially expressed genes (DEGs) analysis was performed using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database and four clusters were determined by a consistent clustering analysis. Three DEGs closely related to overall survival(OS)were identified using Cox regression and LASSO analysis and the hypoxia-related signature was developed and validated in TCGA and International Cancer Genome Consortium (ICGC) database. Then the Gene Set Enrichment Analysis (GSEA) was performed to explore signaling pathways regulated by the signature and the CIBERSORT was used for estimating the fractions of immune cell types.Results A total of 397 hypoxia-related DEGs were detected and three genes (PDSS1, CDCA8 and SLC7A11) were selected to construct a prognosis, recurrence and diagnosis model. Then patients were divided into high- and low-risk groups. Our hypoxia-related signature was significantly associated with worse prognosis and higher recurrence rate. The diagnostic model also accurately distinguished HCC from normal samples and nodules. Furthermore, the hypoxia-related signature could positively regulate immune response and the high-risk group had higher fractions of macrophages, B memory cells and follicle-helper T cells, and exhibited higher expression of immunocheckpoints such as PD1and PDL1.Conclusions Altogether, our study showed that hypoxia-related signature is a potential biomarker for diagnosis, prognosis and recurrence of HCC, and it provided an immunological perspective for developing personalized therapies.


2021 ◽  
Author(s):  
Lianmei Wang ◽  
Jing Liu ◽  
Zhong Xian ◽  
Jingzhuo Tian ◽  
Chunying Li ◽  
...  

Abstract Hepatocellular carcinoma (HCC) is associated with poor 5-year survival. Chronic infection with hepatitis B virus (HBV) contributes to ~ 50% of HCC cases. Establishment of a prognostic model is pivotal for clinical therapy of HBV-related HCC (HBV–HCC). We downloaded gene-expression profiles from Gene expression omnibus (GEO) datasets with HBV-HCC patients and the corresponding controls. Integration of these differentially expressed genes (DEGs) was achieved with the Robustrankaggreg (RRA) method. DEGs functional analyses and pathway analyses was performed using the Gene ontology (GO) database, and the Kyoto encyclopedia of genes and genomes (KEGG) database respectively. DNA topoisomerase II alpha (TOP2A), Disks large-associated protein 5 (DLGAP5), RAD51 associated protein 1 (RAD51AP1), ZW10 interactor (ZWINT), BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B), Cyclin B1 (CCNB1), Forkhead box M1 (FOXM1), Cyclin B2 (CCNB2), Aurora kinase A (AURKA), and Cyclin-dependent kinase 1 (CDK1) were identified as the top-ten hub genes. These hub-genes were verified by the Liver cancer-riken, JP project from international cancer genome consortium (ICGC-LIRI-JP) project, The Cancer genome atlas (TCGA) HCC cohort, and Human protein profiles dataset. FOXM1 and CDK1 were found to be prognostic-related molecules for HBV-HCC patients. The expression patterns of FOXM1 and CDK1were consistently in human and mouse. Furthermore, a nomogram model based on histology grade, pathology stage, sex and, expression of FOXM1 and CDK1 was built to predict the prognosis for HBV–HCC patients. The nomogram model could be used to predict the prognosis of HBV-HCC cases.


2020 ◽  
Vol 10 (8) ◽  
pp. 1189-1196
Author(s):  
Kaikai Ren ◽  
Jiakang Ma ◽  
Bo Zhou ◽  
Xiaoyan Lin ◽  
Mingyu Hou ◽  
...  

Hepatocellular carcinoma (HCC) is a malignancy originating from hepatocytes with a high rate of distant metastasis and recurrence. HCC prognosis remains poorly understood, although its diagnosis and treatment have improved globally. Therefore, it is necessary to identify reliable predictive and prognostic indicators of HCC. HCC gene expression profiles and corresponding clinical data were downloaded from The Cancer Genome Atlas. Seven lncRNAs (C10orf91, AC011352.3, AC015722.2, AC006372.1, PICSAR, AC110285.3, and AP001972.4) associated with immune and clinicopathological features were identified as biomarker candidates for HCC prognosis based on single-sample gene set enrichment analysis, the ESTIMATE algorithm, and Cox PHR analyses. Altogether, the findings revealed that the seven immune-related lncRNAs may provide a reference for improving HCC prognosis.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhao Zhang ◽  
Dongshan Chen ◽  
Zeyan Li ◽  
Zhao Liu ◽  
Lei Yan ◽  
...  

Bladder cancer (BLCA) is the fifth most common cancer and has the features of low survival rate and high morbidity and mortality. The Cancer Genome Atlas (TCGA) is a pool of global gene expression profile and contains huge amounts of cancer genomics data, which makes it possible to inquire the relationship between gene expression and prognosis of a series of malignant tumors including BLCA. Immune and stromal cells are two major components of tumor microenvironment (TME) which play an important role in judging the prognosis of tumor and influencing the progression of malignant, inflammatory, and metabolic disorders. In our study, we conducted a quantitative analysis of immune and stromal elements based on the ESTIMATE algorithm and thus divided BLCA cases into high and low groups. Then the differentially expressed genes closely related to tumor prognosis between groups were identified and had been shown to correlate with immune response and stromal alterations, which was further confirmed by functional enrichment analysis and protein-protein interaction networks. We validated those genes through BLCA dates downloaded from ArrayExpress and thus got the marker genes to predict prognosis of BLCA. Additionally, immune cell infiltration analysis explored the correlation between the verified genes and immune cells. In conclusion, we identified a series of TME-related genes that assess the prognosis and explored the interaction between TME and tumor prognosis to guide clinical individualized treatment.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qiuxian Zheng ◽  
Qin Yang ◽  
Jiaming Zhou ◽  
Xinyu Gu ◽  
Haibo Zhou ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) has a poor prognosis and has become the sixth most common malignancy worldwide due to its high incidence. Advanced approaches to therapy, including immunotherapeutic strategies, have played crucial roles in decreasing recurrence rates and improving clinical outcomes. The HCC microenvironment is important for both tumour carcinogenesis and immunogenicity, but a classification system based on immune signatures has not yet been comprehensively described. Methods HCC datasets from The Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO), and the International Cancer Genome Consortium (ICGC) were used in this study. Gene set enrichment analysis (GSEA) and the ConsensusClusterPlus algorithm were used for clustering assessments. We scored immune cell infiltration and used linear discriminant analysis (LDA) to improve HCC classification accuracy. Pearson's correlation analyses were performed to assess relationships between immune signature indices and immunotherapies. In addition, weighted gene co-expression network analysis (WGCNA) was applied to identify candidate modules closely associated with immune signature indices. Results Based on 152 immune signatures from HCC samples, we identified four distinct immune subtypes (IS1, IS2, IS3, and IS4). Subtypes IS1 and IS4 had more favourable prognoses than subtypes IS2 and IS3. These four subtypes also had different immune system characteristics. The IS1 subtype had the highest scores for IFNγ, cytolysis, angiogenesis, and immune cell infiltration among all subtypes. We also identified 11 potential genes, namely, TSPAN15, TSPO, METTL9, CD276, TP53I11, SPINT1, TSPO, TRABD2B, WARS2, C9ORF116, and LBH, that may represent potential immunological biomarkers for HCC. Furthermore, real-time PCR revealed that SPINT1, CD276, TSPO, TSPAN15, METTL9, and WARS2 expression was increased in HCC cells. Conclusions The present gene-based immune signature classification and indexing may provide novel perspectives for both HCC immunotherapy management and prognosis prediction.


2021 ◽  
Author(s):  
Yuhao Zhang ◽  
Jiaxin Zhang ◽  
Fengxian Wei ◽  
Haodong Zhang ◽  
Dongdong Wang ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC), which carries a very bad prognosis, is a common malignant tumor worldwide. This study aim to identify a pyroptosis-related long non-coding RNA(pyLncRNA) prognostic signature in HCC by integrated bioinformatics analysis. Methods: All expression profiles of HCC were obtained from The Cancer Genome Atlas (TCGA) and pyroptosis-related genes were from the GSEA website. After identified differentially expressed pyLncRNAs, univariate Cox regression and Lasso analysis were used to identify a pyroptosis-related LncRNAs prognositic signature(py-LPS). Internal validation was used to validate the prognostic value of the py-LPS via the Kaplan-Meier(K-M) curve and receiver operating characteristic(ROC) curve. Additional, we established the nomogram and analyzed the correlation between the signature and immune immune infiltration as well as clinical treatment. Result: 7 pyLncRNAs were established the signature for HCC prognosis. K-M curves exhibited the low risk group presented a markedly longer OS than the high. Clinical subgroups analysis based age, gender, grade and stage yielded the similar results. The signature had an independent prognostic value for HCC(p<0.001). Nomogram estimated one-, three- and five-year survival were 0.777, 0.741 and 0.709. Then, gene set enrichment analysis(GSEA) demostrated significant pathways. Futhermore, we found immune cell infiltration and immunotherapy targets was associated with the signature,which could provided clinical recommendations for chemotherapy.Conclusion: In this study, a novel pyroptosis-related LncRNAs porgnostic signature of HCC, correlated with immune infiltration, could predict the survival of HCC patients and give suggestions for clinical treatment.


2020 ◽  
Author(s):  
Baohui Zhang ◽  
Bufu Tang ◽  
Jianyao Gao ◽  
Jiatong Li ◽  
Lingming Kong ◽  
...  

Abstract BackgroundHypoxia plays an indispensable role in the development of hepatocellular carcinoma (HCC). However, there are few studies on the application of hypoxia molecules in the prognosis predicting of HCC. We aim to identify the hypoxia-related genes in HCC and construct reliable models for diagnosis, prognosis and recurrence of HCC patients as well as exploring the potential mechanism.MethodsDifferentially expressed genes (DEGs) analysis was performed using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database and four clusters were determined by a consistent clustering analysis. Three DEGs closely related to overall survival(OS)were identified using Cox regression and LASSO analysis. Then the hypoxia-related signature was developed and validated in TCGA and International Cancer Genome Consortium (ICGC) database. The Gene Set Enrichment Analysis (GSEA) was performed to explore signaling pathways regulated by the signature. CIBERSORT was used for estimating the fractions of immune cell types.ResultsA total of 397 hypoxia-related DEGs in HCC were detected and three genes (PDSS1, CDCA8 and SLC7A11) among them were selected to construct a prognosis, recurrence and diagnosis model. Then patients were divided into high- and low-risk groups. Our hypoxia-related signature was significantly associated with worse prognosis and higher recurrence rate. The diagnostic model also accurately distinguished HCC from normal samples and nodules. Furthermore, the hypoxia-related signature could positively regulate immune response. Meanwhile, the high-risk group had higher fractions of macrophages, B memory cells and follicle-helper T cells, and exhibited higher expression of immunocheckpoints such as PD1and PDL1.ConclusionsAltogether, our study showed that hypoxia-related signature is a potential biomarker for diagnosis, prognosis and recurrence of HCC, and it provided an immunological perspective for developing personalized therapies.


2020 ◽  
Author(s):  
Baohui Zhang ◽  
Bufu Tang ◽  
Jianyao Gao ◽  
Jiatong Li ◽  
Lingming Kong ◽  
...  

Abstract Background Hypoxia plays an indispensable role in the development of hepatocellular carcinoma (HCC). However, there are few studies on the application of hypoxia molecules in the prognosis predicting of HCC. We aimed to identify the hypoxia-related genes in HCC and construct reliable models for diagnosis, prognosis and recurrence of HCC patients as well as exploring the potential mechanism. Methods Differentially expressed genes (DEGs) analysis was performed using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database and four clusters were determined by a consistent clustering analysis. Three DEGs closely related to overall survival(OS)were identified using Cox regression and LASSO analysis and the hypoxia-related signature was developed and validated in TCGA and International Cancer Genome Consortium (ICGC) database. Then the Gene Set Enrichment Analysis (GSEA) was performed to explore signaling pathways regulated by the signature and the CIBERSORT was used for estimating the fractions of immune cell types. Results A total of 397 hypoxia-related DEGs were detected and three genes (PDSS1, CDCA8 and SLC7A11) were selected to construct a prognosis, recurrence and diagnosis model. Then patients were divided into high- and low-risk groups. Our hypoxia-related signature was significantly associated with worse prognosis and higher recurrence rate. The diagnostic model also accurately distinguished HCC from normal samples and nodules. Furthermore, the hypoxia-related signature could positively regulate immune response and the high-risk group had higher fractions of macrophages, B memory cells and follicle-helper T cells, and exhibited higher expression of immunocheckpoints such as PD1and PDL1. Conclusions Altogether, our study showed that hypoxia-related signature is a potential biomarker for diagnosis, prognosis and recurrence of HCC, and it provided an immunological perspective for developing personalized therapies.


Sign in / Sign up

Export Citation Format

Share Document