scholarly journals Dissecting the Role of BET Bromodomain Proteins BRD2 and BRD4 in Human NK Cell Function

2021 ◽  
Vol 12 ◽  
Author(s):  
Adam P. Cribbs ◽  
Panagis Filippakopoulos ◽  
Martin Philpott ◽  
Graham Wells ◽  
Henry Penn ◽  
...  

Natural killer (NK) cells are innate lymphocytes that play a pivotal role in the immune surveillance and elimination of transformed or virally infected cells. Using a chemo-genetic approach, we identify BET bromodomain containing proteins BRD2 and BRD4 as central regulators of NK cell functions, including direct cytokine secretion, NK cell contact-dependent inflammatory cytokine secretion from monocytes as well as NK cell cytolytic functions. We show that both BRD2 and BRD4 control inflammatory cytokine production in NK cells isolated from healthy volunteers and from rheumatoid arthritis patients. In contrast, knockdown of BRD4 but not of BRD2 impairs NK cell cytolytic responses, suggesting BRD4 as critical regulator of NK cell mediated tumor cell elimination. This is supported by pharmacological targeting where the first-generation pan-BET bromodomain inhibitor JQ1(+) displays anti-inflammatory effects and inhibit tumor cell eradication, while the novel bivalent BET bromodomain inhibitor AZD5153, which shows differential activity towards BET family members, does not. Given the important role of both cytokine-mediated inflammatory microenvironment and cytolytic NK cell activities in immune-oncology therapies, our findings present a compelling argument for further clinical investigation.

Blood ◽  
2006 ◽  
Vol 109 (8) ◽  
pp. 3333-3341 ◽  
Author(s):  
Jun Xu ◽  
Ayan K. Chakrabarti ◽  
Jennifer L. Tan ◽  
Lisheng Ge ◽  
Andrea Gambotto ◽  
...  

Abstract Dendritic cells (DCs) and natural killer (NK) cells are essential components of the innate immune system and have a central role in initiation and regulation of adaptive immune responses. During the early critical immune activities, DCs and NK cells interact and reciprocally regulate each other via cell-cell contact. The molecular mediators of the DC–NK-cell crosstalk are largely undefined. In the present study, we show in mice that DC stimulation of NK-cell IFN-γ secretion requires DC membranebound but not secreted products; is increased by augmenting the expression of DC transmembrane tumor necrosis factor (tmTNF) and NK-cell transmembrane TNF receptor type 2 (tmTNFR2); is inhibited by blocking TNF or TNFR2 but not TNFR1; is impaired by knocking out DC Tnf or NK-cell Tnfr2 but not DC Tnfr1 or Tnfr2 and NK-cell Tnf or Tnfr1; and is restored in TNF-deficient DCs by reconstituting tmTNF, but cannot be mimicked by soluble TNF. We also demonstrate that DC TNF and NK-cell TNFR2 are required for DC-mediated NK-cell proliferation and amplification of cytotoxic activity. These novel findings provide the first evidence that DC–NK-cell crosstalk mediates enhancement of NK-cell functions via triggering NK-cell tmTNFR2 by DC tmTNF.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1802
Author(s):  
Nayoung Kim ◽  
Mi Yeon Kim ◽  
Woo Seon Choi ◽  
Eunbi Yi ◽  
Hyo Jung Lee ◽  
...  

Natural killer (NK) cells are innate cytotoxic lymphocytes that provide early protection against cancer. NK cell cytotoxicity against cancer cells is triggered by multiple activating receptors that recognize specific ligands expressed on target cells. We previously demonstrated that glycogen synthase kinase (GSK)-3β, but not GSK-3α, is a negative regulator of NK cell functions via diverse activating receptors, including NKG2D and NKp30. However, the role of GSK-3 isoforms in the regulation of specific ligands on target cells is poorly understood, which remains a challenge limiting GSK-3 targeting for NK cell-based therapy. Here, we demonstrate that GSK-3α rather than GSK-3β is the primary isoform restraining the expression of NKG2D ligands, particularly ULBP2/5/6, on tumor cells, thereby regulating their susceptibility to NK cells. GSK-3α also regulated the expression of the NKp30 ligand B7-H6, but not the DNAM-1 ligands PVR or nectin-2. This regulation occurred independently of BCR-ABL1 mutation that confers tyrosine kinase inhibitor (TKI) resistance. Mechanistically, an increase in PI3K/Akt signaling in concert with c-Myc was required for ligand upregulation in response to GSK-3α inhibition. Importantly, GSK-3α inhibition improved cancer surveillance by human NK cells in vivo. Collectively, our results highlight the distinct role of GSK-3 isoforms in the regulation of NK cell reactivity against target cells and suggest that GSK-3α modulation could be used to enhance tumor cell susceptibility to NK cells in an NKG2D- and NKp30-dependent manner.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 690-690 ◽  
Author(s):  
Joseph S. Palumbo ◽  
Kathryn E. Talmage ◽  
Jessica V. Massari ◽  
Christine M. La Jeunesse ◽  
Matthew J. Flick ◽  
...  

Abstract A linkage between hemostatic system components and tumor cell metastatic potential has been well established, but the underlying mechanism(s) by which various circulating and cell-associated coagulation factors and platelets promote tumor cell dissemination remains to be fully defined. One potential mechanism by which tumor cell-associated microthrombi might enhance metastatic potential is by interfering with the cytolytic elimination of tumor cell emboli by natural killer (NK) cells. In order to explore this hypothesis, we studied tumor dissemination in mice lacking either fibrinogen or Gαq, a G protein critical for platelet activation. Comparative studies of experimental lung metastasis in control and Gαq−/− mice showed that loss of platelet activation resulted in a two-orders-of-magnitude decrease in pulmonary metastatic foci formed by either Lewis lung carcinoma or B16 melanoma. The difference in metastatic success was not the result of differences in tumor growth rate, as tumors transplanted into the dorsal subcutis of Gαq−/− and wildtype animals grew at similar rates. Rather, tumor cell fate analyses using radiolabeled tumor cells showed that the survival of tumor cells within the lung was significantly improved in mice that retained platelet activation function relative to Gαq−/− mice with a profound platelet activation defect. In order to examine the potential interplay between platelet activation and natural killer cell function, we compared pulmonary tumor cell survival in cohorts of control and Gαq−/− mice immuno-depleted of NK cells with an anti-asialo GM1 antibody. Remarkably, platelet function was no longer a determinant of metastatic potential in mice lacking NK cells. Given that fibrin(ogen) is also an established determinant of metastatic success we explored whether the influence of this key hemostatic factor on tumor cell dissemination was also mechanistically-coupled to natural killer cell function. We interbred fibrinogen-deficient mice with Gz-Ly49A transgenic mice known to have a constitutive deficit in NK cells. In those cohorts of mice with normal NK cells, we affirmed the earlier finding that fibrinogen deficiency resulted in a significant diminution in metastatic potential. However, consistent with our findings in mice with defective platelet activation, fibrinogen was found to no longer be a determinant of metastatic potential in mice lacking NK cells. These data establish another important link between innate immune surveillance and the hemostatic system. Further, it appears that at least one mechanism by which tumor cell-associated microthrombi increase metastatic potential is by restricting NK cell-mediated tumor cell elimination. Given that NK cell cytotoxicity requires direct contact with any target cell, one attractive model presently being explored is that tumor cell-associated platelets physically block NK cell access to tumor cell emboli.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1610-1610 ◽  
Author(s):  
Berengere Vire ◽  
Justin SA Perry ◽  
Elinor Lee ◽  
Lawrence S Stennett ◽  
Leigh Samsel ◽  
...  

Abstract Abstract 1610 Poster Board I-636 A major mechanism how the chimeric anti-CD20 monoclonal antibody rituximab (RTX) depletes B-cells is antibody-dependent cellular cytotoxicity (ADCC). ADCC has been modeled in-vitro and in mouse models. However, investigations on ADCC directly in patients treated with RTX are scarce. Recent efforts have focused on improving ADCC through modifications in the Fc binding portion of novel antibodies or through stimulation of effector cell functions with GM-CSF. A more detailed understanding of ADCC as a therapeutic process is needed to optimize such strategies and to identify biomarkers of improved efficacy. Here we report a comprehensive analysis of ADCC in previously untreated CLL patients during the first two RTX infusions (375mg/m2) given in combination with fludarabine every 4 weeks. Following the initial infusion of RTX the absolute lymphocyte count (ALC) decreased by a median of 74% at 2h, followed by a partial recrudescence of cells so that by 24h the median decrease in ALC reached 39% (n=11). ADCC is mediated by effector cells that include NK cells, monocytes/macrophages, and granulocytes. First, we investigated changes in NK cell function: consistent with NK cell activation we found an increase in CD69 at 2, 6 and up to 24h (median 4.2-fold, p=0.005, n=10) after RTX administration and increased expression of the degranulation marker CD107a/b (median 1.9-fold, p<0.001, n=5) and down-regulation of perforin expression (median decrease 63%, p<0.001, n=5) at 4h from treatment start. Activation of NK cells is triggered by the engagement of CD16/FcγRIIIa by RTX coated CLL cells. Interestingly, CD16 expression on NK cells was rapidly lost, already apparent at 2h and maximal at 6h from the start of the RTX infusion (median decrease 82%, p=0.02, n=10) and was not completely recovered by 24h. We also found a significant decrease in expression of CD16 on granulocytes (78%, p<0.001, n=5) but an increase in monocytes (3.9-fold, p<0.001, n=5). In addition to loss of CD16, we found that the cytotoxic capacity of the effector cells was rapidly exhausted: in an oxidative-burst assay, monocytes showed a significant decrease in the production of reactive oxygen species 4h after initiation of RTX infusion (median 60% decrease, p=0.043) and at 6h from the start of the RTX infusion NK cell-mediated killing of K562 target cells was reduced by half (p<0.001, n=3). Interestingly, both the acute reaction to RTX infusions that manifest as a cytokine release syndrome and changes in effector cell function peaked during the first hours of the RTX infusion. We hypothesized that this might be due to the process of CD20 shaving, a rapid and pronounced decrease of CD20 cell surface expression modeled in-vitro and in mice as the result of a mechanism called trogocytosis that relies on the direct and rapid exchange of cell membrane fragments and associated molecules between effectors and target cells (Beum, J Immunol, 2008). First, we used western blot analysis of total CD20 protein in CLL cells and found a rapid loss of CD20 that was apparent already at 2h resulting in virtually complete loss of expression at 24h. Next, we used ImageStream technology to directly visualize ADCC interactions in-vivo. We indeed detected transfer of CD20 from CLL cells to NK cells and monocytes, resulting in complete CD20 loss in circulating CLL cells. While we detected transfer of CD20 into both cell types, monocytes were much more engaged in trogocytosis than NK cells. Consistently, 4h post RTX infusion we found a significant increase in intracellular RTX in granulocytes and monocytes using intracellular staining for human IgG. CD20 shaving appears to be of particular importance given that immunohistochemical analyses revealed that persistent disease in the bone marrow aspirates after 4 cycles of RTX treatment was mostly CD20 negative. Collectively, our results identify loss of CD20 from CLL cells by trogocytosis and exhaustion of immune effector mechanisms as limitations for anti-CD20 immunotherapy. These data identify possible avenues for improving CD20 mediated immunotherapy and characterize endpoints on which different anti-CD20 antibodies can be compared. Given that trogocytosis appears to be a common occurrence our findings likely have general importance to immunotherapy of hematologic malignancies. Disclosures No relevant conflicts of interest to declare.


2004 ◽  
Vol 85 (8) ◽  
pp. 2357-2364 ◽  
Author(s):  
Jukka Sirén ◽  
Timo Sareneva ◽  
Jaana Pirhonen ◽  
Mari Strengell ◽  
Ville Veckman ◽  
...  

NK cells participate in innate immune responses by secreting gamma interferon (IFN-γ) and by destroying virus-infected cells. Here the interaction between influenza A or Sendai virus-infected macrophages and NK cells has been studied. A rapid, cell–cell contact-dependent production of IFN-γ from NK cells cultured with virus-infected macrophages was observed. Expression of the MHC class I-related chain B (MICB) gene, a ligand for NK cell-activating receptor NKG2D, was upregulated in virus-infected macrophages suggesting a role for MICB in the activation of the IFN-γ gene in NK cells. IL12Rβ2, IL18R and T-bet mRNA synthesis was enhanced in NK cells cultured with virus-infected macrophages. Upregulation of these genes was dependent on macrophage-derived IFN-α. In contrast to IL12Rβ2, expression of WSX-1/TCCR, a receptor for IL27, was reduced in NK cells in response to virus-induced IFN-α. In conclusion, these results show that virus-infected macrophages activate NK cells via cytokines and direct cellular interactions and further emphasize the role of IFN-α in the activation of innate immunity.


2019 ◽  
Vol 20 (3) ◽  
pp. 646 ◽  
Author(s):  
Guillaume Le Saux ◽  
Mark Schvartzman

Natural Killer (NK) cells are innate lymphocytes that contribute to immune protection by cytosis, cytokine secretion, and regulation of adaptive responses of T cells. NK cells distinguish between healthy and ill cells, and generate a cytotoxic response, being cumulatively regulated by environmental signals delivered through their diverse receptors. Recent advances in biomaterials and device engineering paved the way to numerous artificial microenvironments for cells, which produce synthetic signals identical or similar to those provided by the physiological environment. In this paper, we review recent advances in materials and devices for artificial signaling, which have been applied to regulate NK cells, and systematically study the role of these signals in NK cell function.


2008 ◽  
Vol 76 (11) ◽  
pp. 5100-5109 ◽  
Author(s):  
Mayra X. Hernandez Sanabria ◽  
Diego A. Vargas-Inchaustegui ◽  
Lijun Xin ◽  
Lynn Soong

ABSTRACT The importance of the interaction between natural killer (NK) cells and dendritic cells (DCs) in the expansion of antiviral and antitumor immune responses is well-documented; however, limited information on DC-NK cell interaction during parasitic infections is available. Given that some Leishmania parasites are known to prevent or suppress DC activation, we developed a DC-NK cell coculture system to examine the role of NK cells in modulating the functions of Leishmania-infected DCs. We found that the addition of freshly isolated, resting NK cells significantly promoted the activation of DCs that were preinfected with Leishmania amazonensis promastigotes and that these activated DCs, in turn, stimulated NK cell activation mostly via cell contact-dependent mechanisms. Notably, L. amazonensis amastigote infection failed to activate DCs, and this lack of DC activation could be partially reversed by the addition of preactivated NK (ANK) cells but not resting NK cells. Moreover, the adoptive transfer of ANK cells into L. amazonensis-infected mice markedly increased DC and T-cell activation and reduced tissue parasite loads at 1 and 3 weeks postinfection. These results suggest differential roles of DC-NK cell cross talk at different stages of Leishmania infection and provide new insight into the interplay of components of the innate immune system during parasitic infection.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Lei Zhao ◽  
Xiaoling Gao ◽  
Hong Bai ◽  
Antony George Joyee ◽  
Shuhe Wang ◽  
...  

Chlamydia pneumoniae(Cpn) infection causes multiple acute and chronic human diseases. The role of DCs in host defense against Cpn infection has been well documented. The same is true for invariant natural killer T (iNKT) cells and NK cells, but the interaction among cells is largely unknown. In this study, we investigated the influence and mechanism of iNKT cell on the differentiation and function of NK cell inCpnlung infection and the role played by DCs in this process. We found that expansion of IFN-γ-producing NK cells quickly happened after the infection, but this response was altered in iNKT knockout (KO) mice. The expression of activation markers and the production of IFN-γby different NK subsets were significantly lower in KO mice than wild-type (WT) mice. Using in vitro DC-NK coculture and in vivo adoptive transfer approaches, we further examined the role of DCs in iNKT-mediated modulation of NK cell function. We found that NK cells expressed lower levels of activation markers and produced less IFN-γwhen they were cocultured with DCs from KO mice than WT mice. More importantly, we found that the adoptive transfer of DCs from the KO mice induced less NK cell activation and IFN-γproduction. The results provided evidence on the modulating effect of iNKT cell on NK cell function, particularly the critical role of DCs in this modulation process. The finding suggests the complexity of cellular interactions inCpnlung infection, which should be considered in designing preventive and therapeutic approaches for diseases and infections.


Blood ◽  
2011 ◽  
Vol 117 (11) ◽  
pp. 3087-3095 ◽  
Author(s):  
David G. T. Hesslein ◽  
Emil H. Palacios ◽  
Joseph C. Sun ◽  
Joshua N. Beilke ◽  
Susan R. Watson ◽  
...  

AbstractThe protein tyrosine phosphatase CD45 is an important regulator of Src-family kinase activity. We found that in the absence of CD45, natural killer (NK) cells are defective in protecting the host from mouse cytomegalovirus infection. We show that although CD45 is necessary for all immunoreceptor tyrosine–based activation motif (ITAM)–specific NK-cell functions and processes such as degranulation, cytokine production, and expansion during viral infection, the impact of CD45 deficiency on ITAM signaling differs depending on the downstream function. CD45-deficient NK cells are normal in their response to inflammatory cytokines when administered ex vivo and in the context of viral infection. Syk and ζ chain–associated protein kinase 70 (Zap70) are thought to play redundant roles in transmitting ITAM signals in NK cells. We show that Syk, but not Zap70, controls the remaining CD45-independent, ITAM-specific NK-cell functions, demonstrating a functional difference between these 2 Syk-kinase family members in primary NK cells.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 66-66 ◽  
Author(s):  
Joseph Palumbo ◽  
Kelley A. Barney ◽  
Matthew J. Flick ◽  
Kathryn E. Talmage ◽  
Keith W. Kombrinck ◽  
...  

Abstract Multiple lines of evidence indicate that the hemostatic system contributes to cancer dissemination. Previous studies have shown that tumor cell-associated tissue factor (TF) expression is a crucial determinant of metastatic potential. Furthermore, we have shown that tumor cell-associated TF supports metastatic potential through mechanism(s) dependent on multiple circulating hemostatic system components, including prothrombin, platelets, fibrinogen and, more recently, fXIII. At least two of these circulating hemostatic factors (platelets and fibrinogen) have been shown to support metastatic potential by impeding the clearance of recently embolized tumor cells by natural killer (NK) cells. It is reasonable to hypothesize that tumor cell-associated TF expression also supports metastatic potential by a mechanism coupled to NK cell function. Here, we used C57BL/6-derived, Ras-transformed tumor cell lines expressing wildtype murine tissue factor (TFWT), a mutant TF lacking the intracytoplasmic portion (TFΔTail), or no tissue factor (TFO) to directly examine the interplay between tumor cell-associated TF and NK cell function in determining metastatic potential. Each of these cell lines was capable of robust, comparable tumor growth in wildtype C57BL/6 mice. Loss of either platelet function or fibrinogen significantly diminished the metastatic potential of TFWT cells, but this effect was entirely abrogated by the concomitant loss of NK cells. Similar results were obtained with TFΔTail cells, indicating that the cytoplasmic portion of TF is not critical to these interactions. To determine if the increase in metastatic potential conferred by tumor cell-associated TF expression is entirely linked to NK cell function, we compared the metastatic potential and early survival of TFWT and TFO cells in mice with and without NK cells. TFOcells rarely formed any visible metastatic foci in mice with intact NK cell function, while TFWT cells were aggressively metastatic. Importantly, TF expression remained a significant determinant of metastatic potential even in mice lacking NK cells. Comparisons of the early fate of TFWT and TFO cells revealed that TF expression was not a determinant of initial tumor cell localization within the lungs. Rather, TF expression supported the sustained adherence and/or survival of tumor cells. Taken together, these data indicate that one mechanism linking tumor cell-associated TF expression to metastatic potential is coupled to circulating hemostatic factors and results in impaired NK cell-mediated clearance of recently established micrometastatic foci. However, TF expression also supports metastasis by at least one additional mechanism that is independent of natural killer cell function.


Sign in / Sign up

Export Citation Format

Share Document