scholarly journals Advanced Materials and Devices for the Regulation and Study of NK Cells

2019 ◽  
Vol 20 (3) ◽  
pp. 646 ◽  
Author(s):  
Guillaume Le Saux ◽  
Mark Schvartzman

Natural Killer (NK) cells are innate lymphocytes that contribute to immune protection by cytosis, cytokine secretion, and regulation of adaptive responses of T cells. NK cells distinguish between healthy and ill cells, and generate a cytotoxic response, being cumulatively regulated by environmental signals delivered through their diverse receptors. Recent advances in biomaterials and device engineering paved the way to numerous artificial microenvironments for cells, which produce synthetic signals identical or similar to those provided by the physiological environment. In this paper, we review recent advances in materials and devices for artificial signaling, which have been applied to regulate NK cells, and systematically study the role of these signals in NK cell function.

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Lei Zhao ◽  
Xiaoling Gao ◽  
Hong Bai ◽  
Antony George Joyee ◽  
Shuhe Wang ◽  
...  

Chlamydia pneumoniae(Cpn) infection causes multiple acute and chronic human diseases. The role of DCs in host defense against Cpn infection has been well documented. The same is true for invariant natural killer T (iNKT) cells and NK cells, but the interaction among cells is largely unknown. In this study, we investigated the influence and mechanism of iNKT cell on the differentiation and function of NK cell inCpnlung infection and the role played by DCs in this process. We found that expansion of IFN-γ-producing NK cells quickly happened after the infection, but this response was altered in iNKT knockout (KO) mice. The expression of activation markers and the production of IFN-γby different NK subsets were significantly lower in KO mice than wild-type (WT) mice. Using in vitro DC-NK coculture and in vivo adoptive transfer approaches, we further examined the role of DCs in iNKT-mediated modulation of NK cell function. We found that NK cells expressed lower levels of activation markers and produced less IFN-γwhen they were cocultured with DCs from KO mice than WT mice. More importantly, we found that the adoptive transfer of DCs from the KO mice induced less NK cell activation and IFN-γproduction. The results provided evidence on the modulating effect of iNKT cell on NK cell function, particularly the critical role of DCs in this modulation process. The finding suggests the complexity of cellular interactions inCpnlung infection, which should be considered in designing preventive and therapeutic approaches for diseases and infections.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3694
Author(s):  
Asad Javed ◽  
Mohammed Milhem

Uveal melanoma has a high mortality rate following metastasis to the liver. Despite advances in systemic immune therapy, treatment of metastatic uveal melanoma (MUM) has failed to achieve long term durable responses. Barriers to success with immune therapy include the immune regulatory nature of uveal melanoma as well as the immune tolerant environment of the liver. To adequately harness the anti-tumor potential of the immune system, non-T cell-based approaches need to be explored. Natural Killer (NK) cells possess potent ability to target tumor cells via innate and adaptive responses. In this review, we discuss evidence that highlights the role of NK cell surveillance and targeting of uveal melanoma. We also discuss the repertoire of intra-hepatic NK cells. The human liver has a vast and diverse lymphoid population and NK cells comprise 50% of the hepatic lymphocytes. Hepatic NK cells share a common niche with uveal melanoma micro-metastasis within the liver sinusoids. It is, therefore, crucial to understand and investigate the role of intra-hepatic NK cells in the control or progression of MUM.


Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 661 ◽  
Author(s):  
Anna Di Pace ◽  
Nicola Tumino ◽  
Francesca Besi ◽  
Claudia Alicata ◽  
Libenzio Conti ◽  
...  

Despite the pivotal role of natural killer (NK) cells in defenses against tumors, their exploitation in cancer treatment is still limited due to their reduced ability to reaching tumor sites and the inhibitory effects of tumor microenvironment (TME) on their function. In this study, we have characterized the exosomes from IL2- or IL15-cultured human NK cells. Both cytokines induced comparable amounts of exosomes with similar cargo composition. Analysis of molecules contained within or exposed at the exosome surface, allowed the identification of molecules playing important roles in the NK cell function including IFN-γ, Lymphocyte Function-Associated Antigen (LFA-1), DNAX Accessory Molecule-1 (DNAM1) and Programmed Cell Death Protein (PD-1). Importantly, we show that DNAM1 is involved in exosome-mediated cytotoxicity as revealed by experiments using blocking antibodies to DNAM1 or DNAM1 ligands. In addition, antibody-mediated inhibition of exosome cytotoxicity results in a delay in target cell apoptosis. We also provide evidence that NK-exosomes may exert their cytolytic activity after short time interval and even at low concentrations. Regarding their possible use in immunotherapy, NK exosomes, detectable in peripheral blood, can diffuse into tissues and exert their cytolytic effect at tumor sites. This property offers a clue to integrate cancer treatments with NK exosomes.


2008 ◽  
Vol 136 (7-8) ◽  
pp. 423-429 ◽  
Author(s):  
Vladimir Jurisic ◽  
Sladjana Stojacic-Djenic ◽  
Natasa Colovic ◽  
Gordana Konjevic

Natural killer (NK) cells are characterized by a CD3-CD16+ CD56+ immunophenotype and have a central role in the innate immune system. They are defined by their capacity to kill certain tumor-target cells or virus infected cells without prior sensitization or MHC-restriction. The activity of the NK cells is determined by the balance between activation and inhibitory receptor molecules expressed on the surface of NK cells. However, several cytokines and chemokines can significantly modulate their activity, inducing increase of NK cell activity. Immunomodulation mediated by NK cells is very important mechanism in tumor immunity, as well as in other immunodepressions of the immune system. In this study, we summarize the role of several cytokines, including IFN, IL-1, IL-2, IL-4, IL-7, IL-12 and IL-17, on NK cell function. The NK cells, after activation, depending on cytokine environment, can differentiate into NK1 cells that produce Th1 cytokine type (IFN-?, IL-2, IL-12) or NK2 cells that produce Th2 type cytokines, enhance exocytosis and release of previously formed molecules from NK cells (granzyme, perforin). We also describe that the release of cytokines and mediators show local or distance effects, or induce apoptosis (mostly by secreted TNF-?) after binding appropriated killer cell receptors from TNF receptor superfamily.


2019 ◽  
Vol 21 (10) ◽  
Author(s):  
Miriam Santiago Kimpo ◽  
Bernice Oh ◽  
Shawn Lee

Abstract Purpose of Review We aim to review the most recent findings in the use of NK cells in childhood cancers. Recent Findings Natural killer cells are cytotoxic to tumor cells. In pediatric leukemias, adoptive transfer of NK cells can bridge children not in remission to transplant. Interleukins (IL2, IL15) can enhance NK cell function. NK cell-CAR therapy has advantages of shorter life span that lessens chronic toxicities, lower risk of graft versus host disease when using allogeneic cells, ability of NK cells to recognize tumor cells that have downregulated MHC to escape T cells, and possibly less likelihood of cytokine storm. Cytotoxicity to solid tumors (rhabdomyosarcoma, Ewing’s sarcoma, neuroblastoma) is seen with graft versus tumor effect in transplant and in combination with antibodies. Challenges lie in the microenvironment which is suppressive for NK cells. Summary NK cell immunotherapy in childhood cancers is promising and recent works aim to overcome challenges.


2020 ◽  
Vol 117 (3) ◽  
pp. 1762-1771 ◽  
Author(s):  
Rachael H. Earls ◽  
Kelly B. Menees ◽  
Jaegwon Chung ◽  
Claire-Anne Gutekunst ◽  
Hyun Joon Lee ◽  
...  

The pathological hallmark of synucleinopathies, including Lewy body dementia and Parkinson’s disease (PD), is the presence of Lewy bodies, which are primarily composed of intracellular inclusions of misfolded α-synuclein (α-syn) among other proteins. α-Syn is found in extracellular biological fluids in PD patients and has been implicated in modulating immune responses in the central nervous system (CNS) and the periphery. Natural killer (NK) cells are innate effector lymphocytes that are present in the CNS in homeostatic and pathological conditions. NK cell numbers are increased in the blood of PD patients and their activity is associated with disease severity; however, the role of NK cells in the context of α-synucleinopathies has never been explored. Here, we show that human NK cells can efficiently internalize and degrade α-syn aggregates via the endosomal/lysosomal pathway. We demonstrate that α-syn aggregates attenuate NK cell cytotoxicity in a dose-dependent manner and decrease the release of the proinflammatory cytokine, IFN-γ. To address the role of NK cells in PD pathogenesis, NK cell function was investigated in a preformed fibril α-syn–induced mouse PD model. Our studies demonstrate that in vivo depletion of NK cells in a preclinical mouse PD model resulted in exacerbated motor deficits and increased phosphorylated α-syn deposits. Collectively, our data provide a role of NK cells in modulating synuclein pathology and motor symptoms in a preclinical mouse model of PD, which could be developed into a therapeutic for PD and other synucleinopathies.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 711
Author(s):  
Elisa C. Toffoli ◽  
Abdolkarim Sheikhi ◽  
Yannick D. Höppner ◽  
Pita de Kok ◽  
Mahsa Yazdanpanah-Samani ◽  
...  

Natural Killer (NK) cells are innate immune cells with the unique ability to recognize and kill virus-infected and cancer cells without prior immune sensitization. Due to their expression of the Fc receptor CD16, effector NK cells can kill tumor cells through antibody-dependent cytotoxicity, making them relevant players in antibody-based cancer therapies. The role of NK cells in other approved and experimental anti-cancer therapies is more elusive. Here, we review the possible role of NK cells in the efficacy of various anti-tumor therapies, including radiotherapy, chemotherapy, and immunotherapy, as well as the impact of these therapies on NK cell function.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chen Huang ◽  
Jiacheng Bi

Natural killer (NK) cells are cytotoxic innate lymphocytes that play an important role in immune surveillance. The development, maturation and effector functions of NK cells are orchestrated by the T-box transcription factor T-bet, whose expression is induced by cytokines such as IFN-γ, IL-12, IL-15 and IL-21 through the respective cytokine receptors and downstream JAK/STATs or PI3K-AKT-mTORC1 signaling pathways. In this review, we aim to discuss the expression and regulation of T-bet in NK cells, the role of T-bet in mouse NK cell development, maturation, and function, as well as the role of T-bet in acute, chronic infection, inflammation, autoimmune diseases and tumors.


2021 ◽  
Vol 12 ◽  
Author(s):  
Adam P. Cribbs ◽  
Panagis Filippakopoulos ◽  
Martin Philpott ◽  
Graham Wells ◽  
Henry Penn ◽  
...  

Natural killer (NK) cells are innate lymphocytes that play a pivotal role in the immune surveillance and elimination of transformed or virally infected cells. Using a chemo-genetic approach, we identify BET bromodomain containing proteins BRD2 and BRD4 as central regulators of NK cell functions, including direct cytokine secretion, NK cell contact-dependent inflammatory cytokine secretion from monocytes as well as NK cell cytolytic functions. We show that both BRD2 and BRD4 control inflammatory cytokine production in NK cells isolated from healthy volunteers and from rheumatoid arthritis patients. In contrast, knockdown of BRD4 but not of BRD2 impairs NK cell cytolytic responses, suggesting BRD4 as critical regulator of NK cell mediated tumor cell elimination. This is supported by pharmacological targeting where the first-generation pan-BET bromodomain inhibitor JQ1(+) displays anti-inflammatory effects and inhibit tumor cell eradication, while the novel bivalent BET bromodomain inhibitor AZD5153, which shows differential activity towards BET family members, does not. Given the important role of both cytokine-mediated inflammatory microenvironment and cytolytic NK cell activities in immune-oncology therapies, our findings present a compelling argument for further clinical investigation.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 313-313
Author(s):  
Joseph H. Chewning ◽  
Charlotte N. Gudme ◽  
Glenn Heller ◽  
Bo Dupont

Abstract The hematopoietic stem cell transplant (HCT) donor KIR genotype has been correlated with disease-free survival in patients with acute myelogenous leukemia. The Killer Cell Immunoglobulin-like Receptor (KIR) gene family encodes highly homologous pairs of activating and inhibiting receptors, 2DL1–2DS1; 2DL2/3–2DS2; and 3DL1–3DS1. Inhibitory members are known to regulate NK cell function through interactions with HLA Class I antigens. The role of activating KIRs and their ligand specificity is, however, not well defined. The activating receptor, KIR2DS1, is known to bind the HLA-Cw C2 group antigens and we have recently demonstrated a role for this receptor in NK cell allorecognition. In contrast, KIR2DS2 does not bind HLA-Cw C1 group antigens, and a functional role of this receptor even in NK allorecognition has not been established. We now demonstrate, that presence of the activating KIR2DS2 gene in NK donors homozygous for the HLA-KIR ligand group C2 is associated with significant alloreactivity against C1 homozygous target cells (polyclonal NK cells, p=0.006; NK clones, p=0.001). This alloreactivity is mediated by “missing self” on the target and is dominated by “lack of C2 group on target”. The “missing C2” effect was absent, however, in C2 homozygous donors lacking 2DS2 (p=0.99). Only very rare cytotoxic NK clones expressing GL183 (2DL2/3, 2DS2) and with alloreactivity against C1 targets could be generated in vitro from 2DS2-positive, C2 homozygous donors. A majority of these rare GL183-positive clones did not demonstrate inhibitory function against the HLA class I deficient 721.221 transfected with Cw3 (C1-group), and GL183 cross-linking of the clones resulted in increased cytokine production. Thus, KIR2DS2 is an activating receptor in NK clones from C2 homozygous donors, but does not appear to recognize C1 ligand. We next investigated 2DS2 function in donors heterozygous for the C groups (i.e. C1/C2). Analysis of NK cell function in a 2DS2-positive, C1/C2 donor revealed a “missing HLA-KIR ligand” effect for the C2 group. Cytotoxicity by IL2-propagated, polyclonal NK cells and NK clones revealed allocytotoxicity against targets lacking the C2 group (p<0.001). In addition, a repertoire analysis on 138 NK clones generated from this donor revealed a marked increase in the number of EB6 (KIR2DL1/S1)-expressing NK clones (95%) compared to both the fresh (10%–50%) and the IL-2-expanded polyclonal NK repertoire (12%–60%). Additionally, all EB6-expressing clones from this donor were inhibited by the C2 ligand. Subsequent studies in freshly isolated NK cells following activating receptor cross-linking (NKp46, NKG2C, and CD16) or by alloantigen activation demonstrated that the functioning subset of NK cells in this donor predominantly expressed the EB6 receptor. Other inhibitory receptors (e.g. NKG2A, KIR3DL1, and KIR3DL2) did not contribute significantly to the functional subset of NK cells. Presence of 2DS2 in this donor was therefore associated with a “skewing” of the NK repertoire towards EB6 positivity, and dominated by functional NK cells that were inhibited by the “self” C2 ligand. Collectively, these studies provide the first evidence that activating KIR can influence the NK cell repertoire. Furthermore, our studies would indicate that presence of activating KIRs in HCT donors for recipients homozygous HLA-KIR ligands might induce post-transplantation graft versus host NK alloreactivity.


Sign in / Sign up

Export Citation Format

Share Document