scholarly journals Deciphering the Prognostic Implications of the Components and Signatures in the Immune Microenvironment of Pancreatic Ductal Adenocarcinoma

2021 ◽  
Vol 12 ◽  
Author(s):  
Rong Tang ◽  
Xiaomeng Liu ◽  
Chen Liang ◽  
Jie Hua ◽  
Jin Xu ◽  
...  

Background: The treatment modalities for pancreatic ductal adenocarcinoma (PDAC) are limited and unsatisfactory. Although many novel drugs targeting the tumor microenvironment, such as immune checkpoint inhibitors, have shown promising efficacy for some tumors, few of them significantly prolong the survival of patients with PDAC due to insufficient knowledge on the tumor microenvironment.Methods: A single-cell RNA sequencing (scRNA-seq) dataset and seven PDAC cohorts with complete clinical and bulk sequencing data were collected for bioinformatics analysis. The relative proportions of each cell type were estimated using the gene set variation analysis (GSVA) algorithm based on the signatures identified by scRNA-seq or previous literature.Results: A meta-analysis of 883 PDAC patients showed that neutrophils are associated with worse overall survival (OS) for PDAC, while CD8+ T cells, CD4+ T cells, and B cells are related to prolonged OS for PDAC, with marginal statistical significance. Seventeen cell categories were identified by clustering analysis based on single-cell sequencing. Among them, CD8+ T cells and NKT cells were universally exhausted by expressing exhaustion-associated molecular markers. Interestingly, signatures of CD8+ T cells and NKT cells predicted prolonged OS for PDAC only in the presence of “targets” for pyroptosis and ferroptosis induction. Moreover, a specific state of T cells with overexpression of ribosome-related proteins was associated with a good prognosis. In addition, the hematopoietic stem cell (HSC)-like signature predicted prolonged OS in PDAC. Weighted gene co-expression network analysis identified 5 hub genes whose downregulation may mediate the observed survival benefits of the HSC-like signature. Moreover, trajectory analysis revealed that myeloid cells evolutionarily consisted of 7 states, and antigen-presenting molecules and complement-associated genes were lost along the pseudotime flow. Consensus clustering based on the differentially expressed genes between two states harboring the longest pseudotime span identified two PDAC groups with prognostic differences, and more infiltrated immune cells and activated immune signatures may account for the survival benefits.Conclusion: This study systematically investigated the prognostic implications of the components of the PDAC tumor microenvironment by integrating single-cell sequencing and bulk sequencing, and future studies are expected to develop novel targeted agents for PDAC treatment.

2019 ◽  
Author(s):  
Xiaoshan Shi ◽  
Savita Jayaram ◽  
Kayla Lee ◽  
Keshav Bhojak ◽  
Vasumathi Kode ◽  
...  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1684-1684
Author(s):  
Raul Montiel-Esparza ◽  
Giulia Barbarito ◽  
Samantha Peck ◽  
Magali Bazzano ◽  
Rachana Patil ◽  
...  

Abstract Background: Hematopoietic stem cell graft manipulation strategies, such as αβT-cell/CD19 B-cell depleted hematopoietic stem cell transplantation (αβhaplo-HSCT), address the lack of matched donors and reduce the incidence of severe acute graft-versus-host disease (aGvHD). However, grade II-IV aGvHD still occurs in 25-30% of αβhaplo-HSCT recipients . Studies aimed at understanding the pathogenesis underlying aGVHD in αβhaplo-HSCT are lacking. We hypothesized that αβT cells adoptively transferred with the HSCT (<1x10 5/Kg) have unique combinatorial cytokine secretion signatures that may predict the occurrence of aGvHD. Here we used the IsoPlexis single-cell proteomics for CD4 + and CD8 + T cells to identify those putative signatures . Methods: Six patients with hematologic malignancies receiving fully myeloablative αβhaplo-HSCT at Lucile Packard Children's Hospital, Stanford, between 08/2018 and 05/2020 were enrolled upon signing IRB approved informed consent. Three patients developed grade II-IV aGvHD, while three did not. Aliquot of the graft and of peripheral blood collected at the time of aGvHD onset or at corresponding time points for the patients who did not develop aGvHD, were analyzed. Single sorted CD4 + and CD8 + T cells were profiled by single-cell barcode chip assay from IsoPlexis system (IsoPlexis, Branford, CT) after stimulation with PMA (50 ng/mL) and Ionomycin (1mcg/mL). Following the Human Adaptive Immune Panel, cytokines from CD4 + and CD8 + single T cells were captured by fluorescence ELISA, which measured the numbers of cytokine-producing cells (secretion frequency) and numbers of cytokines produced by individual cells across five functional groups: effector, stimulatory, chemoattractive, regulatory and inflammatory (Table 1). Polyfunctionality was defined as the secretion of 2+ cytokines from each CD4 + and CD8 + T cell. The T cell polyfunctional strength Index (PSI) was defined as the percentage of polyfunctional cells, multiplied by the sum of the mean fluorescence intensity of the proteins secreted by those cells. Additional statistical analysis was performed using the Student's t test. Results: We compared the combinatorial cytokine secretion signature of individual CD4 + and CD8 + T cells isolated from grafts infused into patients, who eventually did or didn't develop aGvHD. We are comparing the signature of post-HSCT CD4 + and CD8 + T cells isolated from patients who did or did not develop aGvHD. Collectively, we considered three variables: cytokine secretion frequency, numbers of cytokines produced by individual cells and characteristics of the cytokines secreted (functional group) upon stimulation. Single-cell functional heterogeneity evaluated by t-Distributed Stochastic Neighbor Embedding (t-SNE), showed higher CD4 + and CD8 + T-cell polyfunctionality (up to 4+ cytokines) with effector and stimulatory dominant functions in the grafts of patients who developed aGvHD, compared to those who did not develop aGvHD (Fig1). The average PSI (driven by Granzyme B, TNF-α, IFN-γ, MIP-1β, IL2, and IL-8) was found to be higher in both CD4 + and CD8 + T cells from the grafts of patients who developed aGvHD (Fig 2). Combinatorial cytokine secretion analysis showed that T cells from grafts of patients who did not develop aGvHD had unique signatures with CD4 + T cells having the predominant cytokine secretion signature of IL2 and TNF-α, and CD8 + T cells having three predominant cytokine secretion signatures: IL2, IL8, TNF-α; MIP-1β, IL8; and MIP-1β, IFN-γ (Fig3). Conclusions: Preliminary data from αβhaplo-HSCT pediatric recipients obtained using IsoPlexis single-cell functional proteomics for CD4 + and CD8 + T cells showed that an increased donor T-cell polyfunctionality with a Th1 dominant functional phenotype may be predictive of an increased risk of aGvHD, while CD4 + and CD8 + T cells infused into patients who didn't develop aGvHD, had combinations with limited cytokine secretion signatures. Ongoing analysis suggest that polyfunctional CD8 + T cells present in the graft of patients who developed aGvHD, are present at the time of aGvHD initiation, while the polyfunctional CD4 + T cell are not present at the onset of aGvHD. Correlation with ongoing studies on circulating cytokines and clonotypic analysis of αβT cells infused with the graft will be crucial to elucidate the cross talking between the donor's immune system and recipient's inflammatory milieu. Figure 1 Figure 1. Disclosures Parkman: Jasper Biotech: Consultancy. Bertaina: Cellevolve Bio: Membership on an entity's Board of Directors or advisory committees; Neovii: Membership on an entity's Board of Directors or advisory committees; AdicetBio: Membership on an entity's Board of Directors or advisory committees.


2020 ◽  
Author(s):  
Zhen Wang ◽  
Lijian Xie ◽  
Sirui Song ◽  
Liqin Chen ◽  
Guang Li ◽  
...  

AbstractKawasaki disease (KD) is the most common cause of acquired heart disease in children in developed countries. Although diverse immune aberrance was reported, a global understanding of immune responses underlying acute KD was lacking. Based on single-cell sequencing, we profiled peripheral blood mononuclear cells from patients with acute KD before and after intravenous immunoglobulin therapy and from healthy controls. Most differentially expressed genes were derived from monocytes, with upregulation of immunoglobulin receptors, complement and receptors and downregulation of MHC class II receptors before therapy. The percentage of B cells was significantly increased before therapy and rapidly returned to normal after therapy. There was also an increased abundance of B-cell receptors with IGHA and IGHG after therapy, accompanied by massive oligoclonal expansion. The percentage of CD8 T cells was remarkably decreased during acute KD, especially the subset of effector memory CD8 T cells. All lymphocyte compartments were characterized by underexpressed interferon response pathways before therapy. The identification of unique innate and adaptive immune responses suggests potential mechanisms underlying pathogenesis and progression of KD.


2020 ◽  
Author(s):  
Shivan Sivakumar ◽  
Enas Abu-Shah ◽  
David J Ahern ◽  
Edward H Arbe-Barnes ◽  
Nagina Mangal ◽  
...  

AbstractObjectivePancreatic cancer has the worst prognosis of any human malignancy and leukocyte infiltration is a major prognostic marker of the disease. As current immunotherapies confer negligible survival benefits, there is a need to better characterise leukocytes in pancreatic cancer to identify better therapeutic strategies.DesignIn this study, a multi-parameter mass-cytometry analysis was performed on 32,000 T-cells from eight human pancreatic cancer patients. Single-cell RNA sequencing dataset analysis was performed on a cohort of 24 patients. Multiplex immunohistochemistry imaging and spatial analysis were performed to map immune infiltration into the tumour microenvironment.ResultsRegulatory T-cell populations demonstrated highly immunosuppressive states with high TIGIT, ICOS and CD39 expression. CD8+ T-cells were found to be either in senescence or an exhausted state. The exhausted CD8 T-cells had low PD-1 expression but high TIGIT and CD39 expression. These findings were corroborated in an independent pancreatic cancer single-cell RNA dataset from 24 patients.ConclusionsThese data suggest that T-cells are major players in the suppressive microenvironment of pancreatic cancer. Our work identifies novel therapeutic targets that should form the basis for rational design of a new generation of clinical trials in pancreatic ductal adenocarcinoma.Statement of SignificanceThis study elucidates the T-cell phenotypes in pancreatic ductal adenocarcinoma (PDAC). T-cells potentiate immune-suppression through an activated regulatory T-cell population expressing high TIGIT, ICOS and CD39. CD8+ T-cells were primarily senescent or TIGIT+ exhausted, but with minimal PD-1 expression. These findings propose new immunotherapy targets for PDAC.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sachie Kiryu ◽  
Zensho Ito ◽  
Machi Suka ◽  
Tsuuse Bito ◽  
Shin Kan ◽  
...  

Abstract Background Both activated tumor-infiltrating lymphocytes (TILs) and immune-suppressive cells, such as regulatory T cells (Tregs), in the tumor microenvironment (TME) play an important role in the prognosis of patients with pancreatic ductal adenocarcinoma (PDAC). Methods The densities of TILs, programmed death receptor 1 (PD-1) + T cells, and forkhead box P3 (Foxp3) + T cells were analyzed by immunohistochemical staining. The associations of the immunological status of the PDAC microenvironment with overall survival (OS) time and disease-free survival (DFS) time were evaluated. Results PDAC patients with a high density of TILs in the TME or PD-1-positive T cells in tertiary lymphoid aggregates (TLAs) demonstrated a significantly better prognosis than those with a low density of TILs or PD-1-negativity, respectively. Moreover, PDAC patients with high levels of Foxp3-expressing T cells showed a worse prognosis than those with low levels of Foxp3-expressing T cells. Importantly, even with a high density of the TILs in TME or PD-1-positive T cells in TLAs, PDAC patients with high levels of Foxp3-expressing T cells showed a worse prognosis than patients with low levels of Foxp3-expressing T cells. A PDAC TME with a high density of TILs/high PD-1 positivity/low Foxp3 expression was an independent predictive marker associated with superior prognosis. Conclusion Combined assessment of TILs, PD-1+ cells, and Foxp3+ T cells in the TME may predict the prognosis of PDAC patients following surgical resection.


2019 ◽  
Vol 37 (8_suppl) ◽  
pp. 55-55
Author(s):  
Gregory P. Botta ◽  
Tatiana Hurtado De Mendoza ◽  
Harri Jarvelainen ◽  
Erkki Ruoslahti

55 Background: Fibrotic solid tumors have lagged in immunotherapy efficacy. Although breast cancer (BC) shows modest single-agent activity, pancreatic ductal adenocarcinoma (PDAC) immunotherapy has repeatedly failed in clinical trials. A protective desmoplastic, inflammatory reaction encapsulates BC and PDAC where it can make up to 80% of the tumor microenvironment (TME). Reports in BC and PDAC patients and mouse models suggest that tumoricidal effector CD8+ T-cells are indeed present, yet suppressed by regulatory CD4+/CD25+/FoxP3+ T-cells (Tregs) and myeloid cells. Long-term PDAC and BC survivors harbor CD8+ T-cells by immunohistochemistry (IHC), and although inactivated (CD107a-), they are not terminally exhausted (PD-1low). Further, when CD8+ T-cells were found in large quantities within a treatment-naïve biopsy, that patient had an increased overall survival. We hypothesize that low doses of the T-cell proliferative cytokine IL-2 can class switch the TME T-cells if specifically concentrated within the tumor by the stroma-penetrating peptide iRGD. Methods: Subcutaneous BC tumors (4T1) and PDAC (KPC ) tumors were formed in immunocompetent mouse models. Mice were treated with either vehicle, iRGD, IL-2, or both in combination. Tumors were preserved for IHC or enzymatically digested for FACS. CD45+ live cells were fluorescently labeled for effector T-cells (CD4+/CD44+ or CD8+/CD44+), Tregs (CD4+/CD25+/FoxP3+), or cytotoxic T-cells (CD8+/CD44+/Granzyme B+/IL-2+). Results: Versus normal controls, tumors from BC and PDAC both showed a subsequent increase in bulk CD3+ T-cells within the tumor microenvironment (14.3% ± 5 vs. 27.6% ± 8). A significant increase in CD3+ T-cells within all tumors (10%) occured with iRGD only, IL-2 only, or iRGD + IL-2 treatment. Whereas sub-populations of T-cells in the iRGD only and IL-2 only treatment groups was overwhelming composed of Tregs (5%) at CD4/Treg and CD8/Treg ratios of 1.75 and 0.5 respectively, the combination of iRGD + IL-2 shifted the T-cell sub-populations away from Tregs (1.5%) and towards increased CD4/Treg and CD8/Treg ratios (4 and 12 respectively). Conclusions: The combination of iRGD + IL-2 is capable of reprogramming the immunosuppressive Treg tumor microenvironment, increasing effector CD4+ and CD8+ T-cells.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi9-vi9
Author(s):  
Oleg Yegorov ◽  
Changlin Yang ◽  
Maryam Rahman ◽  
Ashley Ghiaseddin ◽  
Anjelika Dechkovskaia ◽  
...  

Abstract BACKGROUND The application of single cell sequencing as a novel immune monitoring platform can enhance the ability to interrogate at unprecedented depth the single-cell level dynamic phenotypic and functional attributes of immune cells in patients undergoing cancer immunotherapy treatment. We applied single-cell sequencing analysis of PBMCs in a patient with newly-diagnosed GBM enrolled on the ATTAC II clinical trial (FDA IND BB-16530) who experienced a sustained complete radiographic response to autologous CMV pp65-LAMP RNA-pulsed DC vaccines plus GM-CSF and tetanus-diphtheria booster administered during adjuvant cycles of dose-intensified TMZ. METHODS We constructed 5’ gene expression libraries and T cell receptor enriched libraries for 10x Genomics single-cell sequencing, generated from PBMCs collected prior to and during patient immunization using dendritic cells loaded with RNA encoding the CMV matrix protein pp65 conjugated with the lysosomal associated membrane protein (LAMP) sequence. RESULTS RNA-Seq revealed dynamic changes in immune cell subsets over course of first three vaccines, including increases in cytotoxic T cells and memory T cell subsets. Increased markers of T cell activation were observed during vaccination including enhanced T cell signaling pathways, proliferative signals, and cytokine production. We found that proportion of cytotoxic T cells increased from 3.42% to 11.74% in whole PBMCs after immunization. Surprisingly, we observed very high level of frequency natural killer T (NKT) cells comprising 4.75 % of this patient’s PBMCs at baseline. After three DC vaccines, the level of NKT cells in PBMC increased up to 10%. CONCLUSIONS Single cell RNA sequencing of a patient with sustained complete response to DC vaccination during cycles of dose-intensified TMZ reveals dynamic immune activation and expansion within the cytotoxic T cells and NKT compartments. These results emphasize the importance of subset specific profiling to achieve higher resolution in monitoring immune responses compared with bulk expression profiling in patients receiving immunotherapeutic treatment.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii104-ii104
Author(s):  
Christopher Alvarez-Breckenridge ◽  
Samuel Markson ◽  
Jackson Stocking ◽  
Matt Lastrapes ◽  
Naema Nayyar ◽  
...  

Abstract Immune checkpoint inhibitors (ICI) have revolutionized oncologic treatment for metastatic melanoma. With improved systemic control, there has been increasing prevalence of patients with brain metastases. Recent evidence has demonstrated intracranial responses in a subset of these patients treated with ICI. We hypothesize that the response to ICI in melanoma brain metastases (MBM) is reflective of unique features within the tumor microenvironment of the brain. A cohort of 27 patients, encompassing 8 pre- and 19 post-immunotherapy MBM underwent single cell RNA sequencing (Smart-Seq2). The cohort includes patients with longitudinal cranial resections and simultaneously resected, spatially distinct tumors. Each tumor underwent unsupervised transcriptomic analysis, differential gene expression, inferred copy number variation, and T-cell receptor (TCR) clonotyping. Published extracranial melanoma single cell datasets were used to compare the tumor microenvironment of the brain and periphery in response to ICI. A total of 14,027 cells (6,189 malignant, 7,838 non-malignant) were sequenced. Brain metastases demonstrated a heterogeneous distribution of macrophage states. Intracranial macrophages were found to be more tumor-supportive than their extracranial counterparts. MBM also included a distribution of reactive neutrophils and astrocytes. Analysis across pre- and post-treatment MBM demonstrated an increase in clonally expanded T cells in patients responding to ICI. Across longitudinal brain metastases collected from the same patients, there was evidence of identical T cell clones across timepoints and locations. Single cell sequencing of MBM provides insights into the cellular composition of the tumor and microenvironment. Our data suggest the cellular heterogeneity within MBM is unique when compared to extracranial disease. Additionally, T cell clonal expansion is found following ICI and T cells of the same clonotype infiltrate spatially and temporally separated brain metastases. These findings raise potential therapeutic implications as we learn to target the differential features of the innate and adaptive immune system within brain metastases and their extracranial counterparts.


Sign in / Sign up

Export Citation Format

Share Document