scholarly journals Roles of Toll-Like Receptor 3 in Human Tumors

2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Zheng ◽  
Song Li ◽  
Hui Yang

Toll-like receptor 3 (TLR3) is an important member of the TLR family, which is an important group of pathogen-associated molecular patterns. TLR3 can recognize double-stranded RNA and induce activation of NF-κB and the production of type I interferons. In addition to its immune-associated role, TLR3 has also been detected in some tumors. However TLR3 can play protumor or antitumor roles in different tumors or cell lines. Here, we review the basic signaling associated with TLR3 and the pro- or antitumor roles of TLR3 in different types of tumors and discuss the possible reasons for the opposing roles of TLR3 in tumors.

2018 ◽  
Vol 19 (10) ◽  
pp. 3104 ◽  
Author(s):  
Sabine Mihm

Inflammatory liver diseases in the absence of pathogens such as intoxication by xenobiotics, cholestatic liver injury, hepatic ischemia-reperfusion injury (I/R), non-alcoholic steatohepatitis (NASH), or alcoholic liver disease (ALD) remain threatening conditions demanding specific therapeutic options. Caused by various different noxae, all these conditions have been recognized to be triggered by danger- or death-associated molecular patterns (DAMPs), discompartmentalized self-structures released by dying cells. These endogenous, ectopic molecules comprise proteins, nucleic acids, adenosine triphosphate (ATP), or mitochondrial compounds, among others. This review resumes the respective modes of their release—passively by necrotic hepatocytes or actively by viable or apoptotic parenchymal cells—and their particular roles in sterile liver pathology. It addresses their sensors and the initial inflammatory responses they provoke. It further addresses a resulting second wave of parenchymal death that might be of different mode, boosting the release of additional, second-line DAMPs. Thus, triggering a more complex and pronounced response. Initial and secondary inflammatory responses comprise the activation of Kupffer cells (KCs), the attraction and activation of monocytes and neutrophil granulocytes, and the induction of type I interferons (IFNs) and their effectors. A thorough understanding of pathophysiology is a prerequisite for identifying rational therapeutic targets.


2018 ◽  
Vol 475 (22) ◽  
pp. 3595-3607 ◽  
Author(s):  
Anthony Fullam ◽  
Lili Gu ◽  
Yvette Höhn ◽  
Martina Schröder

DDX3 is a DEAD-box RNA helicase that we and others have previously implicated in antiviral immune signalling pathways leading to type I interferon (IFN) induction. We previously demonstrated that it directly interacts with the kinase IKKε (IκB kinase ε), enhances it activation, and then facilitates phosphorylation of the transcription factor IRF3 by IKKε. However, the TLR7/9 (Toll-like receptor 7/9)-mediated pathway, one of the most physiologically relevant IFN induction pathways, proceeds independently of IKKε or the related kinase TBK1 (TANK-binding kinase 1). This pathway induces type I IFN production via the kinases NIK (NF-κB-inducing kinase) and IKKα and is activated when plasmacytoid dendritic cells sense viral nucleic acids. In the present study, we demonstrate that DDX3 also directly interacts with IKKα and enhances its autophosphorylation and -activation. Modulation of DDX3 expression consequently affected NIK/IKKα-mediated IRF7 phosphorylation and induction of type I interferons. In addition, alternative NF-κB (nuclear factor-κB) activation, another pathway regulated by NIK and IKKα, was also down-regulated in DDX3 knockdown cells. This substantially broadens the effects of DDX3 in innate immune signalling to pathways beyond TBK1/IKKε and IFN induction. Dysregulation of these pathways is involved in disease states, and thus, our research might implicate DDX3 as a potential target for their therapeutic manipulation.


Autophagy ◽  
2013 ◽  
Vol 9 (5) ◽  
pp. 683-696 ◽  
Author(s):  
Hana Schmeisser ◽  
Samuel B. Fey ◽  
Julie Horowitz ◽  
Elizabeth R. Fischer ◽  
Corey A. Balinsky ◽  
...  

2018 ◽  
Vol 121 ◽  
pp. 16-24 ◽  
Author(s):  
K.H. Simons ◽  
M.R. de Vries ◽  
H.A.B. Peters ◽  
J.F. Hamming ◽  
J.W. Jukema ◽  
...  

2020 ◽  
Vol 21 (8) ◽  
pp. 2857
Author(s):  
Mahesh Chandra Patra ◽  
Maria Batool ◽  
Muhammad Haseeb ◽  
Sangdun Choi

Toll-like receptor 3 (TLR3) provides the host with antiviral defense by initiating an immune signaling cascade for the production of type I interferons. The X-ray structures of isolated TLR3 ectodomain (ECD) and transmembrane (TM) domains have been reported; however, the structure of a membrane-solvated, full-length receptor remains elusive. We investigated an all-residue TLR3 model embedded inside a phospholipid bilayer using molecular dynamics simulations. The TLR3-ECD exhibited a ~30°–35° tilt on the membrane due to the electrostatic interaction between the N-terminal subdomain and phospholipid headgroups. Although the movement of dsRNA did not affect the dimer integrity of TLR3, its sugar-phosphate backbone was slightly distorted with the orientation of the ECD. TM helices exhibited a noticeable tilt and curvature but maintained a consistent crossing angle, avoiding the hydrophobic mismatch with the bilayer. Residues from the αD helix and the CD and DE loops of the Toll/interleukin-1 receptor (TIR) domains were partially absorbed into the lower leaflet of the bilayer. We found that the previously unknown TLR3-TIR dimerization interface could be stabilized by the reciprocal contact between αC and αD helices of one subunit and the αC helix and the BB loop of the other. Overall, the present study can be helpful to understand the signaling-competent form of TLR3 in physiological environments.


Sign in / Sign up

Export Citation Format

Share Document