scholarly journals Reversal of the CD8+ T-Cell Exhaustion Induced by Chronic HIV-1 Infection Through Combined Blockade of the Adenosine and PD-1 Pathways

2021 ◽  
Vol 12 ◽  
Author(s):  
Jing Li ◽  
Hui-Huang Huang ◽  
Bo Tu ◽  
Ming-Ju Zhou ◽  
Wei Hu ◽  
...  

BackgroundTargeting immune checkpoints for HIV treatment potentially provides a double benefit resulting from the ability to restore viral-specific CD8+ T-cell functions and enhance HIV production from reservoir cells. Despite promising pre-clinical data, PD-1 blockade alone in HIV-1-infected patients with advanced cancer has shown limited benefits in controlling HIV, suggesting the need for additional targets beyond PD-1. CD39 and PD-1 are highly co-expressed on CD8+ T cells in HIV-1 infection. However, the characteristics of CD39 and PD-1 dual-positive CD8+ T-cell subsets in chronic HIV-1 infection remain poorly understood.MethodsThis study enrolled 72 HIV-1-infected patients, including 40 treatment naïve and 32 ART patients. A total of 11 healthy individuals were included as controls. Different subsets of CD8+ T cells defined by CD39 and/or PD-1 expression were studied by flow cytometry. The relationships between the frequencies of the different subsets and parameters indicating HIV-1 disease progression were analyzed. Functional (i.e., cytokine secretion, viral inhibition) assays were performed to evaluate the impact of the blockade of adenosine and/or PD-1 signaling on CD8+ T cells.ResultsThe proportions of PD-1+, CD39+, and PD-1+CD39+ CD8+ T cells were significantly increased in treatment naïve patients but were partially lowered in patients on antiretroviral therapy. In treatment naïve patients, the proportions of PD-1+CD39+ CD8+ T cells were negatively correlated with CD4+ T-cell counts and the CD4/CD8 ratio, and were positively correlated with viral load. CD39+CD8+ T cells expressed high levels of the A2A adenosine receptor and were more sensitive to 2-chloroadenosine-mediated functional inhibition than their CD39- counterparts. In vitro, a combination of blocking CD39/adenosine and PD-1 signaling showed a synergic effect in restoring CD8+ T-cell function, as evidenced by enhanced abilities to secrete functional cytokines and to kill autologous reservoir cells.ConclusionIn patients with chronic HIV-1 infection there are increased frequencies of PD-1+, CD39+, and PD-1+CD39+ CD8+ T cells. In treatment naïve patients, the frequencies of PD-1+CD39+ CD8+ T cells are negatively correlated with CD4+ T-cell counts and the CD4/CD8 ratio and positively correlated with viral load. Combined blockade of CD39/adenosine and PD-1 signaling in vitro may exert a synergistic effect in restoring CD8+ T-cell function in HIV-1-infected patients.

2021 ◽  
Vol 12 ◽  
Author(s):  
An-Liang Guo ◽  
Jin-Fang Zhao ◽  
Lin Gao ◽  
Hui-Huang Huang ◽  
Ji-Yuan Zhang ◽  
...  

Exhaustion of HIV-1-specific CD8+ T cells prevents optimal control of HIV-1 infection. Identifying unconventional CD8+ T cell subsets to effectively control HIV-1 replication is vital. In this study, the role of CD11c+ CD8+ T cells during HIV-1 infection was evaluated. The frequencies of CD11c+ CD8+ T cells significantly increased and were negatively correlated with viral load in HIV-1-infected treatment-naïve patients. HIV-1-specific cells were enriched more in CD11c+ CD8+ T cells than in CD11c- CD8+ T cells, which could be induced by HIV-1-derived overlapping peptides, marking an HIV-1-specific CD8+ T cell population. This subset expressed higher levels of activating markers (CD38 and HLA-DR), cytotoxic markers (granzyme B, perforin, and CD107a), and cytokines (IL-2 and TNF-α), with lower levels of PD-1 compared to the CD11c- CD8+ T cell subset. In vitro analysis verified that CD11c+ CD8+ T cells displayed a stronger HIV-1-specific killing capacity than the CD11c- counterparts. These findings indicate that CD11c+ CD8+ T cells have potent immunotherapeutic efficacy in controlling HIV-1 infection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Renan Garcia de Moura ◽  
Luciana Polaco Covre ◽  
Carlos Henrique Fantecelle ◽  
Vitor Alejandro Torres Gajardo ◽  
Carla Baroni Cunha ◽  
...  

Patients infected by Leishmania braziliensis develop debilitating skin lesions. The role of inhibitory checkpoint receptors (ICRs) that induce T cell exhaustion during this disease is not known. Transcriptional profiling identified increased expression of ICRs including PD-1, PDL-1, PDL-2, TIM-3, and CTLA-4 in skin lesions of patients that was confirmed by immunohistology where there was increased expression of PD-1, TIM-3, and CTLA-4 in both CD4+ and CD8+ T cell subsets. Moreover, PDL-1/PDL-2 ligands were increased on skin macrophages compared to healthy controls. The proportions PD1+, but not TIM-3 or CTLA-4 expressing T cells in the circulation were positively correlated with those in the lesions of the same patients, suggesting that PD-1 may regulate T cell function equally in both compartments. Blocking PD-1 signaling in circulating T cells enhanced their proliferative capacity and IFN-γ production, but not TNF-α secretion in response to L. braziliensis recall antigen challenge in vitro. While we previously showed a significant correlation between the accumulation of senescent CD8+CD45RA+CD27- T cells in the circulation and skin lesion size in the patients, there was no such correlation between the extent of PD-1 expression by circulating on T cells and the magnitude of skin lesions suggesting that exhausted-like T cells may not contribute to the cutaneous immunopathology. Nevertheless, we identified exhausted-like T cells in both skin lesions and in the blood. Targeting this population by PD-1 blockade may improve T cell function and thus accelerate parasite clearance that would reduce the cutaneous pathology in cutaneous leishmaniasis.


2016 ◽  
Vol 90 (22) ◽  
pp. 10423-10430 ◽  
Author(s):  
Heather A. Prentice ◽  
Hailin Lu ◽  
Matthew A. Price ◽  
Anatoli Kamali ◽  
Etienne Karita ◽  
...  

ABSTRACT In individuals with HIV-1 infection, depletion of CD4 + T cells is often accompanied by a malfunction of CD8 + T cells that are persistently activated and/or exhausted. While the dynamics and correlates of CD4 counts have been well documented, the same does not apply to CD8 counts. Here, we examined the CD8 counts in a cohort of 497 Africans with primary HIV-1 infection evaluated in monthly to quarterly follow-up visits for up to 3 years in the absence of antiretroviral therapy. Statistical models revealed that (i) CD8 counts were relatively steady in the 3- to 36-month period of infection and similar between men and women; (ii) neither geography nor heterogeneity in the HIV-1 set-point viral load could account for the roughly 10-fold range of CD8 counts in the cohort ( P > 0.25 in all tests); and (iii) factors independently associated with relatively high CD8 counts included demographics (age ≤ 40 years, adjusted P = 0.010) and several human leukocyte antigen class I (HLA-I) alleles, including HLA-A*03:01 ( P = 0.013), B*15:10 ( P = 0.007), and B*58:02 ( P < 0.001). Multiple sensitivity analyses provided supporting evidence for these novel relationships. Overall, these findings suggest that factors associated with the CD8 count have little overlap with those previously reported for other HIV-1-related outcome measures, including viral load, CD4 count, and CD4/CD8 ratio. IMPORTANCE Longitudinal data from 497 HIV-1 seroconverters allowed us to systematically evaluate the dynamics and correlates of CD8 + T-cell counts during untreated primary HIV-1 infection in eastern and southern Africans. Our findings suggest that individuals with certain HLA-I alleles, including A*03 (exclusively A*03:01), persistently maintain relatively high CD8 counts following HIV-1 infection, a finding which may offer an intriguing explanation for the recently reported, negative association of A*03 with HIV-1-specific, broadly neutralizing antibody responses. In future studies, attention to HLA-I genotyping data may benefit in-depth understanding of both cellular and humoral immunity, as well as the intrinsic balances of these types of immunity, especially in settings where there is emerging evidence of antagonism between the two arms of adaptive immunity.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1134
Author(s):  
Won-Ju Kim ◽  
Gil-Ran Kim ◽  
Hyun-Jung Cho ◽  
Je-Min Choi

T cells are key immune cells involved in the pathogenesis of several diseases, rendering them important therapeutic targets. Although drug delivery to T cells is the subject of continuous research, it remains challenging to deliver drugs to primary T cells. Here, we used a peptide-based drug delivery system, AP, which was previously developed as a transdermal delivery peptide, to modulate T cell function. We first identified that AP-conjugated enhanced green fluorescent protein (EGFP) was efficiently delivered to non-phagocytic human T cells. We also confirmed that a nine-amino acid sequence with one cysteine residue was the optimal sequence for protein delivery to T cells. Next, we identified the biodistribution of AP-dTomato protein in vivo after systemic administration, and transduced it to various tissues, such as the spleen, liver, intestines, and even to the brain across the blood–brain barrier. Next, to confirm AP-based T cell regulation, we synthesized the AP-conjugated cytoplasmic domain of CTLA-4, AP-ctCTLA-4 peptide. AP-ctCTLA-4 reduced IL-17A expression under Th17 differentiation conditions in vitro and ameliorated experimental autoimmune encephalomyelitis, with decreased numbers of pathogenic IL-17A+GM-CSF+ CD4 T cells. These results collectively suggest the AP peptide can be used for the successful intracellular regulation of T cell function, especially in the CNS.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3077-3077
Author(s):  
Xiao-hui Zhang ◽  
Guo-xiang Wang ◽  
Yan-rong Liu ◽  
Lan-Ping Xu ◽  
Kai-Yan Liu ◽  
...  

Abstract Abstract 3077 Background: Since prolonged thrombocytopenia (PT) is an independent risk factor for poor clinical outcome after allogeneic hematopoietic stem cell transplantation (allo-HSCT), the underlying mechanisms need to be understood in order to develop selective treatments. Previous studies1–4 have suggested that abnormalities in B cells may play a role in the pathogenesis of PT. However, abnormalities in B cells alone do not fully explain the complete pathogenic mechanisms of PT. Our previous studies5 showed that the frequency of megakaryocytes with a ploidy value ≤ 8N was significantly increased in patients who developed PT after allo-HSCT compared to the control group. Mechanisms concerning the megakaryocyte hypoplasia in PT after allo-HSCT are not well understood. Design and Methods: PT was defined as a platelet count ≤80 × 109/L for more than 3 months after HSCT, recovery of all other cell counts, and no apparent cause for thrombocytopenia, such as aGVHD, disease recurrence, CMV infection, or antiviral drug treatment at three months post-HSCT when all other blood cell counts had return to normal.5 We analyzed T cell subsets in bone marrow (BM) and peripheral blood (PB) from allo-HSCT recipients with and without PT (n = 23 and 17, respectively) and investigated the expression characteristics of homing receptors CX3CR1, CXCR4 and VLA-4 by flow cytometry. Futhermore, Mononuclear cells (MNCs) from PT patients and controls were cultured with and without autologous CD8+ T cells in vitro, and clarify the effect of activated CD8+ T cells on the ploidy and apoptosis of megakaryocytes in the bone marrow. Results: The results demonstrated that the percentage of CD3+ T cells in the BM was significantly higher in PT patients than the experimental controls (76.00 ± 13.04% and 57.49 ± 9.11%, respectively, P < 0.001), whereas this difference was not significant for the PB (71.01 ± 11.49% and 70.49 ± 12.89%, respectively, P = 0.911). While, some T cell subsets in the BM and PB from allo-HSCT recipients with PT were not significantly different from that of the experimental control group, such as CD8+ T cells, CD4+ T cells, CD4+ CD25bright T cells (regulatory T cells), CD44hi CD62Llo CD8+ T cells and naive T cells (CD11a+ CD45RA+). Furthermore, the surface expression of homing receptor CX3CR1 on BM T cells (64.16 ± 14.07% and 37.45 ± 19.66%, respectively, P < 0.001) and CD8+ T cells (56.25 ± 14.54% and 35.16 ± 20.81%, respectively, P = 0.036), but not in blood, were significantly increased in PT patients compared to controls. For these two groups of patients, the surface expression of CXCR4 and VLA-4 on T cells and CD8+ T cells from both BM and PB did not show significant differences. Through the study in vitro, we found that the activated CD8+ T cells in bone marrow of patients with PT might suppress apoptosis (MNC group and Co-culture group: 18.02 ± 3.60% and 13.39 ± 4.22%, P < 0.05, respectively) and Fas expression (MNC group and Co-culture group: 21.10 ± 3.93 and 15.10 ± 2.33, P <0.05, respectively) of megakaryocyte. In addition, megakaryocyte with a ploidy value ≤ 8N (MNC group: 40.03 ± 6.42% and 24.54 ± 4.31%, respectively, P < 0.05) was significantly increased in patients with PT compared to the control group. Conclusions: In conclusion, an increased surface expression of CX3CR1 on T cells may mediate the recruitment of CD8+ T cells into the bone marrow in patients with PT who received an allo-HSCT. Moreover, CD8+CX3CR1+ T cells, which can have significantly increased numbers in bone marrow of patients with PT, likely caused a reduction in the megakaryocyte ploidy, and suppressed megakaryocyte apoptosis via CD8+ T cell-mediated cytotoxic effect, possibly leading to impaired platelet production. Therefore, treatment targeting CX3CR1 should be considered as a reasonable therapeutic strategy for PT following allo-HSCT. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (13) ◽  
pp. 3528-3537 ◽  
Author(s):  
Maryam Ahmadi ◽  
Judith W. King ◽  
Shao-An Xue ◽  
Cécile Voisine ◽  
Angelika Holler ◽  
...  

Abstract The function of T-cell receptor (TCR) gene modified T cells is dependent on efficient surface expression of the introduced TCR α/β heterodimer. We tested whether endogenous CD3 chains are rate-limiting for TCR expression and antigen-specific T-cell function. We show that co-transfer of CD3 and TCR genes into primary murine T cells enhanced TCR expression and antigen-specific T-cell function in vitro. Peptide titration experiments showed that T cells expressing introduced CD3 and TCR genes recognized lower concentration of antigen than T cells expressing TCR only. In vivo imaging revealed that TCR+CD3 gene modified T cells infiltrated tumors faster and in larger numbers, which resulted in more rapid tumor elimination compared with T cells modified by TCR only. After tumor clearance, TCR+CD3 engineered T cells persisted in larger numbers than TCR-only T cells and mounted a more effective memory response when rechallenged with antigen. The data demonstrate that provision of additional CD3 molecules is an effective strategy to enhance the avidity, anti-tumor activity and functional memory formation of TCR gene modified T cells in vivo.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3284-3284
Author(s):  
Ceri E Oldreive ◽  
Anna Skowronska ◽  
Angelo Agathanggelou ◽  
Helen M Parry ◽  
Sergey Krysov ◽  
...  

Abstract The interaction between chronic lymphocytic leukaemia (CLL) cells and T-cells is an important aspect of CLL biology. CLL cells require T-cell support for their proliferation and in addition induce proliferation of regulatory and cytotoxic (CD8+) T-cells. T-cell number and repertoire are both markedly affected by CLL therapy and there is considerable interest in how current treatments modulate the interaction between T-cells and the tumour clone. In this study we investigated whether this relationship was maintained in a xenotransplantation model. CLL engraftment in NOG mice was facilitated by humanisation of the murine microenvironment by allogeneic CD34+ umbilical cord cells or CD14+ monocytes. Accelerated engraftment of both CLL and T-cell compartments was observed in xenografts derived from patients with progressive CLL, suggesting that the biological properties of both subsets are maintained in the murine model. Furthermore, the distribution of helper (CD4+), cytotoxic (CD8+) and regulatory (CD4+CD25+FoxP3+) T-cells was maintained within the xenografts, including retention of the CD4:CD8 ratio. Interestingly, the anergic PD-1+CD160+CD244+TIM3+ T-cell phenotype reported in CLL patients was also evident in T-cells expanded in xenograft models. Consistent with an anergic T-cell phenotype, T-cells from CLL xenografts lacked anti-tumour activity in vitro. Importantly, such anergic cells were observed when T-cells were reconstituted from allogeneic cord blood cells as well as autologous cells, suggesting that CLL cells have the ability to shape T-cell populations of different origin in diverse microenvironments. Finally, to investigate the interaction between specific T-cell subsets and engrafted CLL cells, CD4+, CD8+, and CD25+ T-cells were depleted prior to generation of xenografts. CD8+ T-cell depletion significantly prolonged CLL engraftment (p≤0.01) whereas neither depletion of CD4+ nor CD25+cells had a significant impact. In summary, our results demonstrate that the relationship between CLL tumour cells and reactive T-cells is accurately maintained in a murine xenograft model. Such models will be of great value for investigation of aspects of T-cell function in CLL biology. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 ◽  
Author(s):  
Christina P. Martins ◽  
Lee A. New ◽  
Erin C. O’Connor ◽  
Dana M. Previte ◽  
Kasey R. Cargill ◽  
...  

In Type 1 Diabetes (T1D), CD4+ T cells initiate autoimmune attack of pancreatic islet β cells. Importantly, bioenergetic programs dictate T cell function, with specific pathways required for progression through the T cell lifecycle. During activation, CD4+ T cells undergo metabolic reprogramming to the less efficient aerobic glycolysis, similarly to highly proliferative cancer cells. In an effort to limit tumor growth in cancer, use of glycolytic inhibitors have been successfully employed in preclinical and clinical studies. This strategy has also been utilized to suppress T cell responses in autoimmune diseases like Systemic Lupus Erythematosus (SLE), Multiple Sclerosis (MS), and Rheumatoid Arthritis (RA). However, modulating T cell metabolism in the context of T1D has remained an understudied therapeutic opportunity. In this study, we utilized the small molecule PFK15, a competitive inhibitor of the rate limiting glycolysis enzyme 6-phosphofructo-2-kinase/fructose-2,6- biphosphatase 3 (PFKFB3). Our results confirmed PFK15 inhibited glycolysis utilization by diabetogenic CD4+ T cells and reduced T cell responses to β cell antigen in vitro. In an adoptive transfer model of T1D, PFK15 treatment delayed diabetes onset, with 57% of animals remaining euglycemic at the end of the study period. Protection was due to induction of a hyporesponsive T cell phenotype, characterized by increased and sustained expression of the checkpoint molecules PD-1 and LAG-3 and downstream functional and metabolic exhaustion. Glycolysis inhibition terminally exhausted diabetogenic CD4+ T cells, which was irreversible through restimulation or checkpoint blockade in vitro and in vivo. In sum, our results demonstrate a novel therapeutic strategy to control aberrant T cell responses by exploiting the metabolic reprogramming of these cells during T1D. Moreover, the data presented here highlight a key role for nutrient availability in fueling T cell function and has implications in our understanding of T cell biology in chronic infection, cancer, and autoimmunity.


2020 ◽  
Vol 222 (9) ◽  
pp. 1540-1549
Author(s):  
Bruktawit A Goshu ◽  
Hui Chen ◽  
Maha Moussa ◽  
Jie Cheng ◽  
Marta Catalfamo

Abstract In chronic HIV infection, virus-specific cytotoxic CD8 T cells showed expression of checkpoint receptors and impaired function. Therefore, restoration of CD8 T-cell function is critical in cure strategies. Here, we show that in vitro blockade of programmed cell death ligand 1 (PD-L1) by an anti-PD-L1 antibody (avelumab) in combination with recombinant human interleukin-15 (rhIL-15) synergistically enhanced cytokine secretion by proliferating HIVGag-specific CD8 T cells. In addition, these CD8 T cells have a CXCR3+PD1−/low phenotype, suggesting a potential to traffic into peripheral tissues. In vitro, proliferating CD8 T cells express PD-L1 suggesting that anti-PD-L1 treatment also targets virus-specific CD8 T cells. Together, these data indicate that rhIL-15/avelumab combination therapy could be a useful strategy to enhance CD8 T-cell function in cure strategies.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi122-vi122
Author(s):  
Linchun Jin ◽  
Alicia Hou ◽  
Haipeng Tao ◽  
Aida Karachi ◽  
Meng Na ◽  
...  

Abstract BACKGROUND Glioblastoma (GBM) is a refractory brain tumor that desperately needs new therapeutic interventions. Our group identified CD70 as a novel target of CAR-T therapy for this malignancy. We demonstrate that CD70 is overexpressed by low-/high-grade gliomas and associated with poor survival for patients; CD70 promotes CD8 specific cell death and tumor-associated macrophage infiltration in gliomas. The CD70 CAR (using CD27, a natural costimulatory receptor of T cells as an antigen-binding region) T cells can efficiently eradicate CD70 positive tumors in syngeneic and xenograft mouse models. OBJECTIVE To evaluate the properties of CD70 CAR-transduced T cells in GBM treatment. METHODS CD70 CAR or IL13Rα2 CAR was linked with fluorescent reporter gene EGFP, and cloned into a retroviral vector (pMSGV8). In vitro T cell culture and flow cytometry were used to evaluate the self-enrichment property and susceptibility to TCR stimulation of the CAR T cells. KI67, Bcl-2, CD70 gene expression was tested by qPCR to measure the proliferation/apoptosis properties of the CAR T cells. Cytokine profile was analyzed by ELISA. The anti-tumor response was evaluated using Xenograft mouse models. RESULTS Compared with IL13Rα2 CAR T cells, the frequency of CD70 CAR T cells was significantly increased 3 weeks post transduction, and approximately 100 to 150-fold CD70 CAR T cell expansion without additional stimuli was achieved in vitro. The expanded CD70 CAR T cells were mostly (up to 85%) CD8+ T cells three weeks post CAR transduction. Enhanced proliferative capacity and production of IL-2, IFN-γ, and TNF-α of the CD70 CAR-transduced T cells upon anti-CD3/CD28 stimulation were also revealed. Results from animal models show that the CD70 CAR T cells present superior in vivo persistence and antitumor efficacy. CONCLUSION We show the auto-stimulative property, as well as superior T cell function and antitumor efficacy of CD70 CAR T cells in GBM models.


Sign in / Sign up

Export Citation Format

Share Document