scholarly journals Stamp2 Protects From Maladaptive Structural Remodeling and Systolic Dysfunction in Post-Ischemic Hearts by Attenuating Neutrophil Activation

2021 ◽  
Vol 12 ◽  
Author(s):  
Martin Mollenhauer ◽  
Senai Bokredenghel ◽  
Simon Geißen ◽  
Anna Klinke ◽  
Tobias Morstadt ◽  
...  

The six-transmembrane protein of prostate 2 (Stamp2) acts as an anti-inflammatory protein in macrophages by protecting from overt inflammatory signaling and Stamp2 deficiency accelerates atherosclerosis in mice. Herein, we describe an unexpected role of Stamp2 in polymorphonuclear neutrophils (PMN) and characterize Stamp2’s protective effects in myocardial ischemic injury. In a murine model of ischemia and reperfusion (I/R), echocardiography and histological analyses revealed a pronounced impairment of cardiac function in hearts of Stamp2-deficient- (Stamp2-/-) mice as compared to wild-type (WT) animals. This difference was driven by aggravated cardiac fibrosis, as augmented fibroblast-to-myofibroblast transdifferentiation was observed which was mediated by activation of the redox-sensitive p38 mitogen-activated protein kinase (p38 MAPK). Furthermore, we observed increased production of reactive oxygen species (ROS) in Stamp2-/- hearts after I/R, which is the likely cause for p38 MAPK activation. Although myocardial macrophage numbers were not affected by Stamp2 deficiency after I/R, augmented myocardial infiltration by polymorphonuclear neutrophils (PMN) was observed, which coincided with enhanced myeloperoxidase (MPO) plasma levels. Primary PMN isolated from Stamp2-/- animals exhibited a proinflammatory phenotype characterized by enhanced nuclear factor (NF)-κB activity and MPO secretion. To prove the critical role of PMN for the observed phenotype after I/R, antibody-mediated PMN depletion was performed in Stamp2-/- mice which reduced deterioration of LV function and adverse structural remodeling to WT levels. These data indicate a novel role of Stamp2 as an anti-inflammatory regulator of PMN and fibroblast-to-myofibroblast transdifferentiation in myocardial I/R injury.

Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 653
Author(s):  
Seth O. Asiedu ◽  
Samuel K. Kwofie ◽  
Emmanuel Broni ◽  
Michael D. Wilson

Severely ill coronavirus disease 2019 (COVID-19) patients show elevated concentrations of pro-inflammatory cytokines, a situation commonly known as a cytokine storm. The p38 MAPK receptor is considered a plausible therapeutic target because of its involvement in the platelet activation processes leading to inflammation. This study aimed to identify potential natural product-derived inhibitory molecules against the p38α MAPK receptor to mitigate the eliciting of pro-inflammatory cytokines using computational techniques. The 3D X-ray structure of the receptor with PDB ID 3ZS5 was energy minimized using GROMACS and used for molecular docking via AutoDock Vina. The molecular docking was validated with an acceptable area under the curve (AUC) of 0.704, which was computed from the receiver operating characteristic (ROC) curve. A compendium of 38,271 natural products originating from Africa and China together with eleven known p38 MAPK inhibitors were screened against the receptor. Four potential lead compounds ZINC1691180, ZINC5519433, ZINC4520996 and ZINC5733756 were identified. The compounds formed strong intermolecular bonds with critical residues Val38, Ala51, Lys53, Thr106, Leu108, Met109 and Phe169. Additionally, they exhibited appreciably low binding energies which were corroborated via molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) calculations. The compounds were also predicted to have plausible pharmacological profiles with insignificant toxicity. The molecules were also predicted to be anti-inflammatory, kinase inhibitors, antiviral, platelet aggregation inhibitors, and immunosuppressive, with probable activity (Pa) greater than probable inactivity (Pi). ZINC5733756 is structurally similar to estradiol with a Tanimoto coefficient value of 0.73, which exhibits anti-inflammatory activity by targeting the activation of Nrf2. Similarly, ZINC1691180 has been reported to elicit anti-inflammatory activity in vitro. The compounds may serve as scaffolds for the design of potential biotherapeutic molecules against the cytokine storm associated with COVID-19.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Prachi Umbarkar ◽  
Sultan Tousif ◽  
Anand P Singh ◽  
Joshua C Anderson ◽  
qinkun zhang ◽  
...  

Background: Myocardial fibrosis contributes significantly to heart failure (HF). Fibroblasts are among the predominant cell type in the heart and are primary drivers of fibrosis. To identify the kinases involved in fibrosis, we analyzed the kinome of mouse cardiac fibroblasts (CF) isolated from normal and failing hearts. This unbiased screening revealed the critical role of the GSK-3 family-centric pathways in fibrosis. Previously we have shown that among two isoforms of GSK3, CF-GSK3β acts as a negative regulator of fibrosis in the injured heart. However, the role of CF-GSK3α in the pathogenesis of cardiac diseases is completely unknown. Methods and Results: To define the role of CF-GSK3α in HF, we employed two novel fibroblast-specific KO mouse models. Specifically, GSK3α was deleted from fibroblasts or myofibroblasts with tamoxifen-inducible Tcf21- or periostin- promoter-driven Cre recombinase. In both models, GSK3α deletion restricted pressure overload-induced cardiac fibrosis and preserved cardiac function. We examined the effect of GSK3α deletion on myofibroblast transformation and pro-fibrotic TGFβ1-SMAD3 signaling in vitro . A significant reduction in cell migration, collagen gel contraction, and α-SMA expression in TGFβ1-treated KO CFs confirmed that GSK3α is required for myofibroblast transformation. Surprisingly, GSK3α deletion did not affect SMAD3 activation, indicating the pro-fibrotic role of GSK3α is SMAD3 independent. To further delineate the underlying mechanisms, proteins were isolated from CFs of WT and KO mice at 4 weeks post-injury, and kinome profiling was performed. The kinome analysis identified the downregulation of RAF family kinase activity in KO CFs. Moreover, mapping of significantly altered kinases against literature annotated interactions generated ERK-centric networks. Consistently, flow cytometric analysis of CFs confirmed significantly low levels of pERK in KO mice. Additionally, our in vitro studies demonstrated that GSK3α deletion prevents TGFβ1-induced ERK activation. Interestingly, IL-11, a pro-fibrotic downstream effector of TGFβ1, was remarkably reduced in KO CFs and ERK inhibition further decreased IL-11 expression. Taken together, herein, we discovered the GSK3α-ERK-IL-11 signaling as a critical pro-fibrotic pathway in the heart. Strategies to inhibit this pro-fibrotic network could prevent adverse fibrosis and HF. Conclusion: CF-GSK3α plays a causal role in myocardial fibrosis that could be therapeutically targeted for future clinical applications.


Cells ◽  
2018 ◽  
Vol 7 (8) ◽  
pp. 104 ◽  
Author(s):  
Teng Sun ◽  
Meng-Yang Li ◽  
Pei-Feng Li ◽  
Ji-Min Cao

Autophagy, which is an evolutionarily conserved process according to the lysosomal degradation of cellular components, plays a critical role in maintaining cell homeostasis. Autophagy and mitochondria autophagy (mitophagy) contribute to the preservation of cardiac homeostasis in physiological settings. However, impaired or excessive autophagy is related to a variety of diseases. Recently, a close link between autophagy and cardiac disorders, including myocardial infarction, cardiac hypertrophy, cardiomyopathy, cardiac fibrosis, and heart failure, has been demonstrated. MicroRNAs (miRNAs) are a class of small non-coding RNAs with a length of approximately 21–22 nucleotides (nt), which are distributed widely in viruses, plants, protists, and animals. They function in mediating the post-transcriptional gene silencing. A growing number of studies have demonstrated that miRNAs regulate cardiac autophagy by suppressing the expression of autophagy-related genes in a targeted manner, which are involved in the pathogenesis of heart diseases. This review summarizes the role of microRNAs in cardiac autophagy and related cardiac disorders. Furthermore, we mainly focused on the autophagy regulation pathways, which consisted of miRNAs and their targeted genes.


2004 ◽  
Vol 92 (12) ◽  
pp. 1387-1393 ◽  
Author(s):  
Athan Kuliopulos ◽  
Ramon Mohanlal ◽  
Lidija Covic

SummarySystemic inflammation has been shown to be a contributing factor to the instability of atherosclerotic plaques in patients with acute coronary syndromes (ACS). VX-702, a novel p38 mitogen-activated protein kinase (MAPK) inhibitor, is currently under investigation in ACS patients with unstable angina to evaluate its safety and efficacy during percutaneous coronary intervention (PCI).The role of p38 MAPK in platelet aggregation of normal individuals was examined using the selective second generation p38 MAPK inhibitor VX-702. Treatment of platelets with thrombin (activates PAR1 and PAR4 thrombin receptors), SFLLRN (PAR1), AYPGKF (PAR4), collagen (α2β1 and GPVI/FCγIIR receptors) and U46619 (TXA2) resulted in strong activation of p38 MAPK. Activation of the GPIb von Willebrand factor receptor with ristocetin did not stimulate p38 MAPK. Pre-treatment of platelets with 1 μM VX-702 completely inhibited activation of p38 MAPK by thrombin, SFLLRN, AYPGKF, U46619, and collagen. There was no effect of VX-702 on platelet aggregation induced by any of the agonists in the presence or absence of aspirin, heparin or apyrase. It has been postulated that a potential role of p38 MAPK is to activate phospholipase A2 (cPLA2) which catalyses formation of arachidonic acid leading to production of thromboxane. Interestingly, we show contrasting effects of p38 MAPK inhibition as compared to aspirin inhibition on platelet aggregation in response to collagen. Blockade of TXA2 production by aspirin results in significant inhibition of collagen activation. However, VX-702 has no effect on collagen-mediated platelet aggregation, suggesting that blocking p38 MAPK does not effect thromboxane production in human platelets. Therefore, unlike aspirin blockade of thromboxane production in platelets, p38 MAPK inhibitors such as VX-702 do not significantly affect platelet function and would not be expected to contribute to an elevated risk of bleeding side-effects in treated patients.


2017 ◽  
Vol 69 (3) ◽  
pp. 409-418 ◽  
Author(s):  
Iván Patraca ◽  
Nohora Martínez ◽  
Oriol Busquets ◽  
Aleix Martí ◽  
Ignacio Pedrós ◽  
...  

2019 ◽  
Author(s):  
Suchita Singh ◽  
Rakesh Arya ◽  
Rhishikesh R Bargaje ◽  
Mrinal Kumar Das ◽  
Subia Akram ◽  
...  

AbstractA diet derived agent Curcumin (Diferuloylmethane), demonstrated its clinical application in inflammation, infection and cancer conditions. Nevertheless, its impact on the proteome of epithelial cells of non-small cell lung carcinoma (NSCLC) is yet to be explored. We employed a stable isotope labeling method for cell culture (SILAC) based relative quantitative proteomics and informatics analysis to comprehend global proteome change in A549 cells treated with curcumin and/or Lipopolysaccharide (LPS). Pretreated A549 cells were infected with Mycobacterium tuberculosis H37Rv strain to monitor bacterial load. With exposure to curcumin and LPS, out of the 1492 identified proteins, 305 and 346 proteins showed deregulation respectively. The expression of BID and AIFM1 mitochondrial proteins which play critical role in apoptotic pathway were deregulated in curcumin treated cells. Higher mitochondria intensity was observed in curcumin treated A549 cells than LPS treatment. Simultaneous treatment of curcumin and LPS neutralized the effect of LPS. Curcumin and/or LPS pretreated A549 cells infected with H37Rv, showed successful bacterial internalization. LPS treated A549 cells after infection showed increased bacterial load than curcumin compared to non-treated infected cells. However, simultaneous treatment of curcumin and LPS neutralized the effect of LPS. This study generated molecular evidence to deepen our understanding of the anti-inflammatory role of curcumin and may be useful to identify molecular targets for drug discovery.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hui Lin ◽  
Le Guan ◽  
Liping Meng ◽  
Hiroyasu Uzui ◽  
Hangyuan Guo

Background: Cardiac fibroblast (CF) activation is a hallmark feature of cardiac fibrosis in diabetic cardiomyopathy (DCM). Inhibition of the sodium-dependent glucose transporter 1 (SGLT1) attenuates cardiomyocyte apoptosis and delays the development of DCM. However, the role of SGLT1 in CF activation remains unclear.Methods: A rat model of DCM was established and treated with si‐SGLT1 to examine cardiac fibrosis. In addition, in vitro experiments were conducted to verify the regulatory role of SGLT1 in proliferation and collagen secretion in high-glucose– (HG–) treated CFs.Results: SGLT1 was found to be upregulated in diabetic cardiac tissues and HG-induced CFs. HG stimulation resulted in increased proliferation and migration, increased the expression of transforming growth factor-β1 and collagen I and collagen III, and increased phosphorylation of p38 mitogen-activated protein kinase and extracellular signal-regulated kinase (ERK) 1/2. These trends in HG-treated CFs were significantly reversed by si-SGLT1. Moreover, the overexpression of SGLT1 promoted CF proliferation and collagen synthesis and increased phosphorylation of p38 mitogen-activated protein kinase and ERK1/2. SGLT1 silencing significantly alleviated cardiac fibrosis, but had no effect on cardiac hypertrophy in diabetic hearts.Conclusion: These findings provide new information on the role of SGLT1 in CF activation, suggesting a novel therapeutic strategy for the treatment of DCM fibrosis.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Sônia A. L. Corrêa ◽  
Katherine L. Eales

A significant amount of evidence suggests that the p38-mitogen-activated protein kinase (MAPK) signalling cascade plays a crucial role in synaptic plasticity and in neurodegenerative diseases. In this review we will discuss the cellular localisation and activation of p38 MAPK and the recent advances on the molecular and cellular mechanisms of its substrates: MAPKAPK 2 (MK2) and tau protein. In particular we will focus our attention on the understanding of the p38 MAPK-MK2 and p38 MAPK-tau activation axis in controlling neuroinflammation, actin remodelling and tau hyperphosphorylation, processes that are thought to be involved in normal ageing as well as in neurodegenerative diseases. We will also give some insight into how elucidating the precise role of p38 MAPK-MK2 and p38 MAPK-tau signalling cascades may help to identify novel therapeutic targets to slow down the symptoms observed in neurodegenerative diseases such as Alzheimer's and Parkinson's disease.


2004 ◽  
Vol 24 (13) ◽  
pp. 5657-5666 ◽  
Author(s):  
Betty Lamothe ◽  
Masashi Yamada ◽  
Ute Schaeper ◽  
Walter Birchmeier ◽  
Irit Lax ◽  
...  

ABSTRACT The docking protein Gab1 has been implicated as a mediator of multiple signaling pathways that are activated by a variety of receptor tyrosine kinases and cytokines. We have previously proposed that fibroblast growth factor 1 (FGF1) stimulation of tyrosine phosphorylation of Gab1 and recruitment of phosphatidylinositol (PI) 3-kinase are mediated by an indirect mechanism in which the docking protein fibroblast receptor substrate 2α (FRS2α) plays a critical role. In this report, we explore the role of Gab1 in FGF1 signaling by using mouse embryo fibroblasts (MEFs) derived from Gab1−/− or FRS2α−/− mice. We demonstrate that Gab1 is essential for FGF1 stimulation of both PI 3-kinase and the antiapoptotic protein kinase Akt, while FGF1-induced mitogen-activated protein kinase (MAPK) stimulation is not affected by Gab1 deficiency. To test the indirect mechanism for FGF1 stimulation of PI 3-kinase and Akt, we use a chimeric docking protein composed of the membrane targeting signal and the phosphotyrosine-binding domain of FRS2α fused to the C-terminal portion of Gab1, the region including the binding sites for the complement of signaling proteins that are recruited by Gab1. We demonstrate that expression of the chimeric docking protein in Gab1−/− MEFs rescues PI 3-kinase and the Akt responses, while expression of the chimeric docking protein in FRS2α−/− MEFs rescues stimulation of both Akt and MAPK. These experiments underscore the essential role of Gab1 in FGF1 stimulation of the PI 3-kinase/Akt signaling pathway and provide further support for the indirect mechanism for FGF1 stimulation of PI 3-kinase involving regulated assembly of a multiprotein complex.


Sign in / Sign up

Export Citation Format

Share Document