scholarly journals Mutation in Irf8 Gene (Irf8R294C) Impairs Type I IFN-Mediated Antiviral Immune Response by Murine pDCs

2021 ◽  
Vol 12 ◽  
Author(s):  
Annesa Das ◽  
Kuldeep Singh Chauhan ◽  
Himanshu Kumar ◽  
Prafullakumar Tailor

Plasmacytoid dendritic cells (pDCs) are the key producers of type I interferons (IFNs), thus playing a central role in initiating antiviral immune response. Besides robust type I IFN production, pDCs also act as antigen presenting cells post immunogenic stimulation. Transcription factor Irf8 is indispensable for the development of both pDC and cDC1 subset. However, the mechanism underlying the differential regulation by IRF8 in cDC1- and pDC-specific genomic architecture of developmental pathways still remains to be fully elucidated. Previous studies indicated that the Irf8R294C mutation specifically abrogates development of cDC1 without affecting that of pDC. In the present study using RNA-seq based approach, we have found that though the point mutation Irf8R294C did not affect pDC development, it led to defective type I IFN production, thus resulting in inefficient antiviral response. This observation unraveled the distinctive roles of IRF8 in these two subpopulations—regulating the development of cDC1 whereas modulating the functionality of pDCs without affecting development. We have reported here that Irf8R294C mutation also caused defect in production of ISGs as well as defective upregulation of costimulatory molecules in pDCs in response to NDV infection (or CpG stimulation). Through in vivo studies, we demonstrated that abrogation of type I IFN production was concomitant with reduced upregulation of costimulatory molecules in pDCs and increased NDV burden in IRF8R294C mice in comparison with wild type, indicating inefficient viral clearance. Further, we have also shown that Irf8R294C mutation abolished the activation of type I IFN promoter by IRF8, justifying the low level of type I IFN production. Taken together, our study signifies that the single point mutation in Irf8, Irf8R294C severely compromised type I IFN-mediated immune response by murine pDCs, thereby causing impairment in antiviral immunity.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhan Yin ◽  
Nils Burger ◽  
Duvaraka Kula-Alwar ◽  
Dunja Aksentijević ◽  
Hannah R. Bridges ◽  
...  

AbstractMitochondrial complex I is central to the pathological reactive oxygen species (ROS) production that underlies cardiac ischemia–reperfusion (IR) injury. ND6-P25L mice are homoplasmic for a disease-causing mtDNA point mutation encoding the P25L substitution in the ND6 subunit of complex I. The cryo-EM structure of ND6-P25L complex I revealed subtle structural changes that facilitate rapid conversion to the “deactive” state, usually formed only after prolonged inactivity. Despite its tendency to adopt the “deactive” state, the mutant complex is fully active for NADH oxidation, but cannot generate ROS by reverse electron transfer (RET). ND6-P25L mitochondria function normally, except for their lack of RET ROS production, and ND6-P25L mice are protected against cardiac IR injury in vivo. Thus, this single point mutation in complex I, which does not affect oxidative phosphorylation but renders the complex unable to catalyse RET, demonstrates the pathological role of ROS production by RET during IR injury.


2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Yingying Mao ◽  
Xuejun Wang ◽  
Renhe Yan ◽  
Wei Hu ◽  
Andrew Li ◽  
...  

2019 ◽  
Vol 93 (6) ◽  
Author(s):  
Laura K. Springgay ◽  
Kristin Fitzpatrick ◽  
Byung Park ◽  
Ryan D. Estep ◽  
Scott W. Wong

ABSTRACTInterferon (IFN) production and the subsequent induction of IFN-stimulated genes (ISGs) are highly effective innate strategies utilized by cells to protect against invading pathogens, including viruses. Critical components involved in this innate process are promyelocytic leukemia nuclear bodies (PML-NBs), which are subnuclear structures required for the development of a robust IFN response. As such, PML-NBs serve as an important hurdle for viruses to overcome to successfully establish an infection. Both Kaposi’s sarcoma-associated herpesvirus (KSHV) and the closely related rhesus macaque rhadinovirus (RRV) are unique for encoding viral homologs of IFN regulatory factors (termed vIRFs) that can manipulate the host immune response by multiple mechanisms. All four KSHV vIRFs inhibit the induction of IFN, while vIRF1 and vIRF2 can inhibit ISG induction downstream of the IFN receptor. Less is known about the RRV vIRFs. RRV vIRF R6 can inhibit the induction of IFN by IRF3; however, it is not known whether any RRV vIRFs inhibit ISG induction following IFN receptor signaling. In our present study, we demonstrate that the RRV vIRF R12 aids viral replication in the presence of the type I IFN response. This is achieved in part through the disruption of PML-NBs and the inhibition of robust ISG transcription.IMPORTANCEKSHV and RRV encode a unique set of homologs of cellular IFN regulatory factors, termed vIRFs, which are hypothesized to help these viruses evade the innate immune response and establish infections in their respective hosts. Our work elucidates the role of one RRV vIRF, R12, and demonstrates that RRV can dampen the type I IFN response downstream of IFN signaling, which would be important for establishing a successful infectionin vivo.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Yuanyuan Zhu ◽  
Xiang An ◽  
Xiao Zhang ◽  
Yu Qiao ◽  
Tongsen Zheng ◽  
...  

Abstract The aberrant appearance of DNA in the cytoplasm triggers the activation of cGAS-cGAMP-STING signaling and induces the production of type I interferons, which play critical roles in activating both innate and adaptive immune responses. Recently, numerous studies have shown that the activation of STING and the stimulation of type I IFN production are critical for the anticancer immune response. However, emerging evidence suggests that STING also regulates anticancer immunity in a type I IFN-independent manner. For instance, STING has been shown to induce cell death and facilitate the release of cancer cell antigens. Moreover, STING activation has been demonstrated to enhance cancer antigen presentation, contribute to the priming and activation of T cells, facilitate the trafficking and infiltration of T cells into tumors and promote the recognition and killing of cancer cells by T cells. In this review, we focus on STING and the cancer immune response, with particular attention to the roles of STING activation in the cancer-immunity cycle. Additionally, the negative effects of STING activation on the cancer immune response and non-immune roles of STING in cancer have also been discussed.


2008 ◽  
Vol 89 (1) ◽  
pp. 261-270 ◽  
Author(s):  
Lioubov M. Pletneva ◽  
Otto Haller ◽  
David D. Porter ◽  
Gregory A. Prince ◽  
Jorge C. G. Blanco

Respiratory syncytial virus (RSV) is the primary cause of bronchiolitis in young children. In general, RSV is considered to be a poor inducer of type I (alpha/beta) interferons (IFNs). Measurement of active type I IFN production during infection in vivo is demanding, as multiple IFN subtypes with overlapping activities are produced. In contrast, Mx gene expression, which is tightly regulated by type I IFN expression, is easily determined. This study therefore measured Mx expression as a reliable surrogate marker of type I IFN activity during RSV infection in vivo in a cotton rat model. It was shown that expression of Mx genes was dramatically augmented in the lungs of infected animals in a dose- and virus strain-dependent manner. The expression of Mx genes in the lungs was paralleled by their induction in the nose and spleen, although in spleen no simultaneous virus gene expression was detected. Reinfection of RSV-immune animals leads to abortive virus replication in the lungs. Thus, type I IFN and Mx gene expression was triggered in reinfected animals, even though virus could not be isolated from their lungs. Furthermore, it was demonstrated that immunity to RSV wanes with time. Virus replication and Mx gene expression became more prominent with increasing intervals between primary infection and reinfection. These results highlight the role of type I IFN in modulation of the immune response to RSV.


Blood ◽  
2002 ◽  
Vol 99 (9) ◽  
pp. 3263-3271 ◽  
Author(s):  
Maria Montoya ◽  
Giovanna Schiavoni ◽  
Fabrizio Mattei ◽  
Ion Gresser ◽  
Filippo Belardelli ◽  
...  

Abstract Resting dendritic cells (DCs) are resident in most tissues and can be activated by environmental stimuli to mature into potent antigen-presenting cells. One important stimulus for DC activation is infection; DCs can be triggered through receptors that recognize microbial components directly or by contact with infection-induced cytokines. We show here that murine DCs undergo phenotypic maturation upon exposure to type I interferons (type I IFNs) in vivo or in vitro. Moreover, DCs either derived from bone marrow cells in vitro or isolated from the spleens of normal animals express IFN-α and IFN-β, suggesting that type I IFNs can act in an autocrine manner to activate DCs. Consistent with this idea, the ability to respond to type I IFN was required for the generation of fully activated DCs from bone marrow precursors, as DCs derived from the bone marrow of mice lacking a functional receptor for type I IFN had reduced expression of costimulatory and adhesion molecules and a diminished ability to stimulate naive T-cell proliferation compared with DCs derived from control bone marrow. Furthermore, the addition of neutralizing anti–IFN-α/β antibody to purified splenic DCs in vitro partially blocked the “spontaneous” activation of these cells, inhibiting the up-regulation of costimulatory molecules, secretion of IFN-γ, and T-cell stimulatory activity. These results show that DCs both secrete and respond to type I IFN, identifying type I interferons as autocrine DC activators.


2000 ◽  
Vol 19 (4) ◽  
pp. 672-682 ◽  
Author(s):  
Jun Xie ◽  
Martine Collart ◽  
Marc Lemaire ◽  
Gertraud Stelzer ◽  
Michael Meisterernst

2016 ◽  
Vol 2 (10) ◽  
pp. e1501695 ◽  
Author(s):  
Ivan V. Smirnov ◽  
Andrey V. Golovin ◽  
Spyros D. Chatziefthimiou ◽  
Anastasiya V. Stepanova ◽  
Yingjie Peng ◽  
...  

In vitro selection of antibodies from large repertoires of immunoglobulin (Ig) combining sites using combinatorial libraries is a powerful tool, with great potential for generating in vivo scavengers for toxins. However, addition of a maturation function is necessary to enable these selected antibodies to more closely mimic the full mammalian immune response. We approached this goal using quantum mechanics/molecular mechanics (QM/MM) calculations to achieve maturation in silico. We preselected A17, an Ig template, from a naïve library for its ability to disarm a toxic pesticide related to organophosphorus nerve agents. Virtual screening of 167,538 robotically generated mutants identified an optimum single point mutation, which experimentally boosted wild-type Ig scavenger performance by 170-fold. We validated the QM/MM predictions via kinetic analysis and crystal structures of mutant apo-A17 and covalently modified Ig, thereby identifying the displacement of one water molecule by an arginine as delivering this catalysis.


2016 ◽  
Vol 9 (2) ◽  
pp. 581-594 ◽  
Author(s):  
Patrícia Raleiras ◽  
Namita Khanna ◽  
Hélder Miranda ◽  
Lívia S. Mészáros ◽  
Henning Krassen ◽  
...  

The uptake hydrogenase HupSL became a H2 producer in N. punctiforme after modifying the proximal FeS cluster with the single point mutation C12P.


2012 ◽  
Vol 92 (2) ◽  
pp. 303-309 ◽  
Author(s):  
Kee Woong Park ◽  
Judith M. Kolkman ◽  
Carol A. Mallory-Smith

Park, K. W., Kolkman, J. M. and Mallory-Smith, C. A. 2012. Point mutation in acetolactate synthase confers sulfonylurea and imidazolinone herbicide resistance in spiny annual sow-thistle [Sonchus asper (L.) Hill]. Can. J. Plant Sci. 92: 303–309. Suspected thifensulfuron resistant spiny annual sow-thistle was identified near Colfax, Washington, in two fields with a winter wheat and lentil rotation. Therefore, studies were conducted to examine resistance of spiny annual sow-thistle to thifensulfuron and cross-resistance to other acetolactate synthase inhibitors and to determine the physiological and molecular basis for herbicide resistance. Whole-plant bioassay confirmed that the biotype was highly resistant to the sulfonylurea (SU) herbicides, thifensulfuron, metsulfuron, and prosulfuron. The resistant (R) biotype was also highly resistant to the imidazolinone (IMI) herbicides, imazamox and imazethapyr. An in vivo acetolactate synthase (ALS) assay indicated that the concentrations of SU and IMI herbicides required for 50% inhibition (I50) were more than 10 times greater for R biotype compared with susceptible (S) biotype. Analysis of the nucleotide and predicted amino acid sequences for ALS genes demonstrated a single-point mutation from C to T at the als1 gene, conferring the substitution of the amino acid leucine for proline in the R biotype at position197. The results of this research indicate that the resistance of spiny annual sow-thistle to SU and IMI herbicides is due to on altered target site and caused by a point mutation in the als1 gene.


Sign in / Sign up

Export Citation Format

Share Document