scholarly journals Implementing Logic Gates for Safer Immunotherapy of Cancer

2021 ◽  
Vol 12 ◽  
Author(s):  
Mohammed Azharuddin Savanur ◽  
Hadas Weinstein-Marom ◽  
Gideon Gross

Targeting solid tumors with absolute precision is a long-standing challenge in cancer immunotherapy. The identification of antigens, which are expressed by a large fraction of tumors of a given type and, preferably, across various types, but not by normal cells, holds the key to developing safe, off-the-shelf immunotherapies. Although the quest for widely shared, strictly tumor-specific antigens has been the focus of tremendous effort, only few such candidates have been implicated. Almost all antigens that are currently explored as targets for chimeric antigen receptor (CAR) or T cell receptor (TCR)-T cell therapy are also expressed by healthy cells and the risk of on-target off-tumor toxicity has remained a major concern. Recent studies suggest that this risk could be obviated by targeting instead combinations of two or more antigens, which are co-expressed by tumor but not normal cells and, as such, are tumor-specific. Moreover, the expression of a shared tumor antigen along with the lack of a second antigen that is expressed by normal tissues can also be exploited for precise recognition. Additional cues, antigenic or non-antigenic ones, which characterize the tumor microenvironment, could be harnessed to further increase precision. This review focuses on attempts to define the targetable signatures of tumors and assesses different strategies employing advanced synthetic biology for translating such information into safer modes of immunotherapy, implementing the principles of Boolean logic gates.

Author(s):  
Johan Verhagen ◽  
Edith Van der Meijden ◽  
Vanessa Lang ◽  
Andreas Kremer ◽  
Simon Völkl ◽  
...  

Since December 2019, Coronavirus disease-19 (COVID-19) has spread rapidly across the world, leading to a global effort to develop vaccines and treatments. Despite extensive progress, there remains a need for treatments to bolster the immune responses in infected immunocompromised individuals, such as cancer patients who recently underwent a haematopoietic stem cell transplantation. Immunological protection against COVID-19 is mediated by both short-lived neutralising antibodies and long-lasting virus-reactive T cells. Therefore, we propose that T cell therapy may augment efficacy of current treatments. For the greatest efficacy with minimal adverse effects, it is important that any cellular therapy is designed to be as specific and directed as possible. Here, we identify T cells from COVID-19 patients with a potentially protective response to two major antigens of the SARS-CoV-2 virus, Spike and Nucleocapsid protein. By generating clones of highly virus-reactive CD4+ T cells, we were able to confirm a set of 9 immunodominant epitopes and characterise T cell responses against these. Accordingly, the sensitivity of T cell clones for their specific epitope, as well as the extent and focus of their cytokine response was examined. Moreover, by using an advanced T cell receptor (TCR) sequencing approach, we determined the paired TCR sequences of clones of interest. While these data on a limited population require further expansion for universal application, the results presented here form a crucial first step towards TCR-transgenic CD4+ T cell therapy of COVID-19.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 696 ◽  
Author(s):  
Bianca Simon ◽  
Dennis C. Harrer ◽  
Beatrice Schuler-Thurner ◽  
Gerold Schuler ◽  
Ugur Uslu

Tumor cells can develop immune escape mechanisms to bypass T cell recognition, e.g., antigen loss or downregulation of the antigen presenting machinery, which represents a major challenge in adoptive T cell therapy. To counteract these mechanisms, we transferred not only one, but two receptors into the same T cell to generate T cells expressing two additional receptors (TETARs). We generated these TETARs by lentiviral transduction of a gp100-specific T cell receptor (TCR) and subsequent electroporation of mRNA encoding a second-generation CSPG4-specific chimeric antigen receptor (CAR). Following pilot experiments to optimize the combined DNA- and RNA-based receptor transfer, the functionality of TETARs was compared to T cells either transfected with the TCR only or the CAR only. After transfection, TETARs clearly expressed both introduced receptors on their cell surface. When stimulated with tumor cells expressing either one of the antigens or both, TETARs were able to secrete cytokines and showed cytotoxicity. The confirmation that two antigen-specific receptors can be functionally combined using two different methods to introduce each receptor into the same T cell opens new possibilities and opportunities in cancer immunotherapy. For further evaluation, the use of these TETARs in appropriate animal models will be the next step towards a potential clinical use in cancer patients.


2018 ◽  
Vol 6 (5) ◽  
pp. 594-604 ◽  
Author(s):  
Takemasa Tsuji ◽  
Akira Yoneda ◽  
Junko Matsuzaki ◽  
Anthony Miliotto ◽  
Courtney Ryan ◽  
...  

2019 ◽  
Vol 20 (22) ◽  
pp. 5621 ◽  
Author(s):  
Mariko Asaoka ◽  
Takashi Ishikawa ◽  
Kazuaki Takabe ◽  
Santosh K. Patnaik

APOBEC3 enzymes contribute significantly to DNA mutagenesis in cancer. These enzymes are also capable of converting C bases at specific positions of RNAs to U. However, the prevalence and significance of this C-to-U RNA editing in any cancer is currently unknown. We developed a bioinformatics workflow to determine RNA editing levels at known APOBEC3-mediated RNA editing sites using exome and mRNA sequencing data of 1040 breast cancer tumors. Although reliable editing determinations were limited due to sequencing depth, editing was observed in both tumor and adjacent normal tissues. For 440 sites (411 genes), editing was determinable for ≥5 tumors, with editing occurring in 0.6%–100% of tumors (mean 20%, SD 14%) at an average level of 0.6%–20% (mean 7%, SD 4%). Compared to tumors with low RNA editing, editing-high tumors had enriched expression of immune-related gene sets, and higher T cell and M1 macrophage infiltration, B and T cell receptor diversity, and immune cytolytic activity. Concordant with this, patients with increased RNA editing in tumors had better disease- and progression-free survivals (hazard ratio = 1.67–1.75, p < 0.05). Our study identifies that APOBEC3-mediated RNA editing occurs in breast cancer tumors and is positively associated with elevated immune activity and improved survival.


1989 ◽  
Vol 169 (3) ◽  
pp. 795-806 ◽  
Author(s):  
H S Teh ◽  
H Kishi ◽  
B Scott ◽  
H Von Boehmer

Transgenic mice that carry on a large fraction of their T cells an alpha/beta T cell receptor that recognizes the male antigen in the context of H-2Db molecules were constructed. An mAb specific for the transgenic receptor was developed and used to analyze T cell subsets in male transgenic H-2b mice. The vast majority of immature CD4+8+ T cells that express the transgenic TCR were deleted in the male transgenic mouse. Nevertheless, the majority of T cells spared by this deletion process expressed a high level of the transgenic TCR. These T cells, however, had an abnormal CD4/CD8 phenotype in that they expressed either no CD8 molecules or only low levels.


2017 ◽  
Vol 19 (suppl_3) ◽  
pp. iii18-iii19
Author(s):  
Z. Chheda ◽  
G. Kohanbash ◽  
J. Sidney ◽  
K. Okada ◽  
N. Jahan ◽  
...  

2020 ◽  
Vol 12 (571) ◽  
pp. eaaz6667
Author(s):  
Meixi Hao ◽  
Siyuan Hou ◽  
Weishuo Li ◽  
Kaiming Li ◽  
Lingjing Xue ◽  
...  

Treatment of solid tumors with T cell therapy has yielded limited therapeutic benefits to date. Although T cell therapy in combination with proinflammatory cytokines or immune checkpoints inhibitors has demonstrated preclinical and clinical successes in a subset of solid tumors, unsatisfactory results and severe toxicities necessitate the development of effective and safe combinatorial strategies. Here, the liposomal avasimibe (a metabolism-modulating drug) was clicked onto the T cell surface by lipid insertion without disturbing the physiological functions of the T cell. Avasimibe could be restrained on the T cell surface during circulation and extravasation and locally released to increase the concentration of cholesterol in the T cell membrane, which induced rapid T cell receptor clustering and sustained T cell activation. Treatment with surface anchor-engineered T cells, including mouse T cell receptor transgenic CD8+ T cells or human chimeric antigen receptor T cells, resulted in superior antitumor efficacy in mouse models of melanoma and glioblastoma. Glioblastoma was completely eradicated in three of the five mice receiving surface anchor-engineered chimeric antigen receptor T cells, whereas mice in other treatment groups survived no more than 64 days. Moreover, the administration of engineered T cells showed no obvious systemic side effects. These cell-surface anchor-engineered T cells hold translational potential because of their simple generation and their safety profile.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiao Han ◽  
Yao Wang ◽  
Jianshu Wei ◽  
Weidong Han

AbstractThe approval of two chimeric antigen receptor-modified T cell types by the US Food and Drug Administration (FDA) for the treatment of hematologic malignancies is a milestone in immunotherapy; however, the application of CAR-T cells has been limited by antigen escape and on-target, off-tumor toxicities. Therefore, it may be a potentially effective strategy to select appropriate targets and to combine multi-antigen-targeted CAR-T cells with “OR”, “AND” and “NOT” Boolean logic gates. We summarize the current limitations of CAR-T cells as well as the efficacy and safety of logic-gated CAR-T cells in antitumor therapy. This review will help to explore more optimized strategies to expand the CAR-T cell therapeutic window.


2019 ◽  
Vol 18 ◽  
pp. 153303381983106 ◽  
Author(s):  
Jianxiang Zhang ◽  
Lingyu Wang

T-cell receptor–engineered T-cell therapy and chimeric antigen receptor T-cell therapy are 2 types of adoptive T-cell therapy that genetically modify natural T cells to treat cancers. Although chimeric antigen receptor T-cell therapy has yielded remarkable efficacy for hematological malignancies of the B-cell lineages, most solid tumors fail to respond significantly to chimeric antigen receptor T cells. T-cell receptor–engineered T-cell therapy, on the other hand, has shown unprecedented promise in treating solid tumors and has attracted growing interest. In order to create an unbiased, comprehensive, and scientific report for this fast-moving field, we carefully analyzed all 84 clinical trials using T-cell receptor–engineered T-cell therapy and downloaded from ClinicalTrials.gov updated by June 11, 2018. Informative features and trends were observed in these clinical trials. The number of trials initiated each year is increasing as expected, but an interesting pattern is observed. NY-ESO-1, as the most targeted antigen type, is the target of 31 clinical trials; melanoma is the most targeted cancer type and is the target of 33 clinical trials. Novel antigens and underrepresented cancers remain to be targeted in future studies and clinical trials. Unlike chimeric antigen receptor T-cell therapy, only about 16% of the 84 clinical trials target against hematological malignancies, consistent with T-cell receptor–engineered T-cell therapy’s high potential for solid tumors. Six pharma/biotech companies with novel T-cell receptor–engineered T-cell ideas and products were examined in this review. Multiple approaches have been utilized in these companies to increase the T-cell receptor’s affinity and efficiency and to minimize cross-reactivity. The major challenges in the development of the T-cell receptor–engineered T-cell therapy due to tumor microenvironment were also discussed here.


Sign in / Sign up

Export Citation Format

Share Document