scholarly journals Native CGRP Neuropeptide and Its Stable Analogue SAX, But Not CGRP Peptide Fragments, Inhibit Mucosal HIV-1 Transmission

2021 ◽  
Vol 12 ◽  
Author(s):  
Jammy Mariotton ◽  
Anette Sams ◽  
Emmanuel Cohen ◽  
Alexis Sennepin ◽  
Gabriel Siracusano ◽  
...  

BackgroundThe vasodilator neuropeptide calcitonin gene-related peptide (CGRP) plays both detrimental and protective roles in different pathologies. CGRP is also an essential component of the neuro-immune dialogue between nociceptors and mucosal immune cells. We previously discovered that CGRP is endowed with anti-viral activity and strongly inhibits human immunodeficiency virus type 1 (HIV-1) infection, by suppressing Langerhans cells (LCs)-mediated HIV-1 trans-infection in-vitro and mucosal HIV-1 transmission ex-vivo. This inhibition is mediated via activation of the CGRP receptor non-canonical NFκB/STAT4 signaling pathway that induces a variety of cooperative mechanisms. These include CGRP-mediated increase in the expression of the LC-specific pathogen recognition C-type lectin langerin and decrease in LC-T-cell conjugates formation. The clinical utility of CGRP and modalities of CGRP receptor activation, for inhibition of mucosal HIV-1 transmission, remain elusive.MethodsWe tested the capacity of CGRP to inhibit HIV-1 infection in-vivo in humanized mice. We further compared the anti-HIV-1 activities of full-length native CGRP, its metabolically stable analogue SAX, and several CGRP peptide fragments containing its binding C-terminal and activating N-terminal regions. These agonists were evaluated for their capacity to inhibit LCs-mediated HIV-1 trans-infection in-vitro and mucosal HIV-1 transmission in human mucosal tissues ex-vivo.ResultsA single CGRP intravaginal topical treatment of humanized mice, followed by HIV-1 vaginal challenge, transiently restricts the increase in HIV-1 plasma viral loads but maintains long-lasting higher CD4+ T-cell counts. Similarly to CGRP, SAX inhibits LCs-mediated HIV-1 trans-infection in-vitro, but with lower potency. This inhibition is mediated via CGRP receptor activation, leading to increased expression of both langerin and STAT4 in LCs. In contrast, several N-terminal and N+C-terminal bivalent CGRP peptide fragments fail to increase langerin and STAT4, and accordingly lack anti-HIV-1 activities. Finally, like CGRP, treatment of human inner foreskin tissue explants with SAX, followed by polarized inoculation with cell-associated HIV-1, completely blocks formation of LC-T-cell conjugates and HIV-1 infection of T-cells.ConclusionOur results show that CGRP receptor activation by full-length CGRP or SAX is required for efficient inhibition of LCs-mediated mucosal HIV-1 transmission. These findings suggest that formulations containing CGRP, SAX and/or their optimized agonists/analogues could be harnessed for HIV-1 prevention.

Blood ◽  
2000 ◽  
Vol 96 (4) ◽  
pp. 1327-1333 ◽  
Author(s):  
Andreas Gruber ◽  
June Kan-Mitchell ◽  
Kelli L. Kuhen ◽  
Tetsu Mukai ◽  
Flossie Wong-Staal

Abstract Dendritic cells (DCs) genetically modified to continually express and present antigens may be potent physiologic adjuvants for induction of prophylactic or therapeutic immunity. We have previously shown that an env and nef deleted HIV-1 vector (HIV-1ΔEN) pseudotyped with VSV-G transduced monocyte-derived macrophages as well as CD34+ precursors of DCs. Here we extended these findings with HIV-1ΔEN to highly differentiated human DCs derived in culture from circulating monocytes (DCs). In addition, a new vector derived from HIV-1ΔEN but further deleted in its remaining accessory genes vif, vpr, and vpu(HIV-1ΔEN V3) was also tested. Both vectors efficiently transduced DCs. Transduction of DCs did not significantly alter their viability or their immunophenotype when compared with untransduced DCs. Furthermore, the phagocytic potential of immature DCs, as well as their ability to differentiate into mature DCs capable of stimulating T-cell proliferation, was not affected. Finally, DCs transduced by the HIV-1ΔEN vector were able to elicit a primary antiviral cytotoxic T-cell response in autologous CD8 T cells. These results suggest that HIV-1–based vectors expressing viral antigens may be useful for in vivo active immunization as well as ex vivo priming of cytotoxic T cells for adoptive T-cell therapy.


Blood ◽  
2009 ◽  
Vol 113 (25) ◽  
pp. 6351-6360 ◽  
Author(s):  
Jorge R. Almeida ◽  
Delphine Sauce ◽  
David A. Price ◽  
Laura Papagno ◽  
So Youn Shin ◽  
...  

Abstract CD8+ T cells are major players in the immune response against HIV. However, recent failures in the development of T cell–based vaccines against HIV-1 have emphasized the need to reassess our basic knowledge of T cell–mediated efficacy. CD8+ T cells from HIV-1–infected patients with slow disease progression exhibit potent polyfunctionality and HIV-suppressive activity, yet the factors that unify these properties are incompletely understood. We performed a detailed study of the interplay between T-cell functional attributes using a bank of HIV-specific CD8+ T-cell clones isolated in vitro; this approach enabled us to overcome inherent difficulties related to the in vivo heterogeneity of T-cell populations and address the underlying determinants that synthesize the qualities required for antiviral efficacy. Conclusions were supported by ex vivo analysis of HIV-specific CD8+ T cells from infected donors. We report that attributes of CD8+ T-cell efficacy against HIV are linked at the level of antigen sensitivity. Highly sensitive CD8+ T cells display polyfunctional profiles and potent HIV-suppressive activity. These data provide new insights into the mechanisms underlying CD8+ T-cell efficacy against HIV, and indicate that vaccine strategies should focus on the induction of HIV-specific T cells with high levels of antigen sensitivity to elicit potent antiviral efficacy.


Blood ◽  
2000 ◽  
Vol 96 (4) ◽  
pp. 1327-1333 ◽  
Author(s):  
Andreas Gruber ◽  
June Kan-Mitchell ◽  
Kelli L. Kuhen ◽  
Tetsu Mukai ◽  
Flossie Wong-Staal

Dendritic cells (DCs) genetically modified to continually express and present antigens may be potent physiologic adjuvants for induction of prophylactic or therapeutic immunity. We have previously shown that an env and nef deleted HIV-1 vector (HIV-1ΔEN) pseudotyped with VSV-G transduced monocyte-derived macrophages as well as CD34+ precursors of DCs. Here we extended these findings with HIV-1ΔEN to highly differentiated human DCs derived in culture from circulating monocytes (DCs). In addition, a new vector derived from HIV-1ΔEN but further deleted in its remaining accessory genes vif, vpr, and vpu(HIV-1ΔEN V3) was also tested. Both vectors efficiently transduced DCs. Transduction of DCs did not significantly alter their viability or their immunophenotype when compared with untransduced DCs. Furthermore, the phagocytic potential of immature DCs, as well as their ability to differentiate into mature DCs capable of stimulating T-cell proliferation, was not affected. Finally, DCs transduced by the HIV-1ΔEN vector were able to elicit a primary antiviral cytotoxic T-cell response in autologous CD8 T cells. These results suggest that HIV-1–based vectors expressing viral antigens may be useful for in vivo active immunization as well as ex vivo priming of cytotoxic T cells for adoptive T-cell therapy.


1997 ◽  
Vol 8 (1) ◽  
pp. 54-59
Author(s):  
JK Lazdins ◽  
JK Walker ◽  
RM Cozens ◽  
G Flesch ◽  
C Czendlik ◽  
...  

The aim of the study was to determine whether the concentration of CGP 53437 measured in the sera of normal volunteers following oral administration of a single dose, had retained its anti-HIV activity; and whether such results could be of predictive value for future clinical antiviral efficacy studies. CGP 53437 is an inhibitor of HIV-1 protease that suppresses HIV-1 replication in human lymphocytes in vitro at 100 nM. The in vitro anti-HIV activity of human sera obtained from CGP 53437-treated individuals was compared with that of sera spiked with known concentrations of CGP 53437 (in the presence or absence of α-1 acid glycoprotein). It was found that the concentration of the compound measured in the sera from treated individuals provided the expected in vitro anti-HIV activity. These results not only validate our analytical method for detection of CGP 53437, but also support the notion that interaction of CGP 53437 with plasma proteins does not significantly affect its antiviral activity (shift of the ED90 by a factor of three). In conclusion, ex vivo anti-HIV activity determinations of sera containing an HIV protease inhibitor, in conjunction with the pharmacokinetic evaluation during Phase I clinical studies, can provide valuable information regarding the suitability of such inhibitors for further clinical studies.


2021 ◽  
Author(s):  
Marcela Vassão de Almeida Batista ◽  
Laís Teodoro Silva ◽  
Sadia Samer ◽  
Telma Miyuki Oshiro ◽  
Iart Luca Shytaj ◽  
...  

Abstract BackgroundWe developed a personalized Monocyte-Derived Dendritic Therapy (MDDCT) for HIV-infected individuals on suppressive antiretroviral treatment and evaluated HIV-specific T-cell responses.MethodsPBMCs were obtained from 10 HIV+ individuals enrolled in trial NCT02961829. Monocytes were differentiated into DCs using IFN-α and GM-CSF. After sequencing each patient’s HIV-1 Gag and determining HLA profiles, autologous Gag peptides were selected based on the predicted individual immunogenicity and used to pulse MDDCs. Three doses of the MDDCT were administered every 15 days. To assess immunogenicity, patients’ cells were stimulated in vitro with autologous peptides, and intracellular IL-2, TNF, and interferon-gamma (IFN-γ) production were measured in CD4+ and CD8+ T-cells. ResultsThe protocol of ex-vivo treatment with IFN-α and GM-CSF was able to induce maturation of MDDCs, as well as to preserve their viability for reinfusion. MDDCT administration was associated with increased expression of IL-2 in CD4+ and CD8+ T-cells at 15 and/or 30 days after the first MDDCT administration. Moreover, intracellular TNF and IFN-γ expression was significantly increased in CD4+ T-cells. The number of candidates that increased in vitro the cytokine levels in CD4+ and CD8+ T cells upon stimulation with Gag peptides from baseline to days 15 and from baseline to days 30 and days 120 after MDDCT was significant as compared to Gag unstimulated response. This was accompanied by an increasing trend in the frequency of polyfunctional T-cells over time, which was visible when considering both cells expressing two and three out of the three cytokines examined. ConclusionsMDDC has a mature profile, and this MDDCT promoted in-vitro T-cell immune responses in HIV-infected patients undergoing long-term suppressive antiretroviral treatment.NCT02961829: (Multi Interventional Study Exploring HIV-1 Residual Replication: a Step Towards HIV-1 Eradication and Sterilizing Cure, https://www.clinicaltrials.gov/ct2/show/NCT02961829, posted November 11th, 2016).


2019 ◽  
Vol 93 (24) ◽  
Author(s):  
Deanna A. Kulpa ◽  
Aarthi Talla ◽  
Jessica H. Brehm ◽  
Susan Pereira Ribeiro ◽  
Sally Yuan ◽  
...  

ABSTRACT During antiretroviral therapy (ART), human immunodeficiency virus type 1 (HIV-1) persists as a latent reservoir in CD4+ T cell subsets in central memory (TCM), transitional memory (TTM), and effector memory (TEM) CD4+ T cells. We have identified differences in mechanisms underlying latency and responses to latency-reversing agents (LRAs) in ex vivo CD4+ memory T cells from virally suppressed HIV-infected individuals and in an in vitro primary cell model of HIV-1 latency. Our ex vivo and in vitro results demonstrate the association of transcriptional pathways of T cell differentiation, acquisition of effector function, and cell cycle entry in response to LRAs. Analyses of memory cell subsets showed that effector memory pathways and cell surface markers of activation and proliferation in the TEM subset are predictive of higher frequencies of cells carrying an inducible reservoir. Transcriptional profiling also demonstrated that the epigenetic machinery (known to control latency and reactivation) in the TEM subset is associated with frequencies of cells with HIV-integrated DNA and inducible HIV multispliced RNA. TCM cells were triggered to differentiate into TEM cells when they were exposed to LRAs, and this increase of TEM subset frequencies upon LRA stimulation was positively associated with higher numbers of p24+ cells. Together, these data highlight differences in underlying biological latency control in different memory CD4+ T cell subsets which harbor latent HIV in vivo and support a role for differentiation into a TEM phenotype in facilitating latency reversal. IMPORTANCE By performing phenotypic analysis of latency reversal in CD4+ T cells from virally suppressed individuals, we identify the TEM subset as the largest contributor to the inducible HIV reservoir. Differential responses of memory CD4+ T cell subsets to latency-reversing agents (LRAs) demonstrate that HIV gene expression is associated with heightened expression of transcriptional pathways associated with differentiation, acquisition of effector function, and cell cycle entry. In vitro modeling of the latent HIV reservoir in memory CD4+ T cell subsets identify LRAs that reverse latency with ranges of efficiency and specificity. We found that therapeutic induction of latency reversal is associated with upregulation of identical sets of TEM-associated genes and cell surface markers shown to be associated with latency reversal in our ex vivo and in vitro models. Together, these data support the idea that the effector memory phenotype supports HIV latency reversal in CD4+ T cells.


Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1134 ◽  
Author(s):  
Shan Su ◽  
Giselle Rasquinha ◽  
Lanying Du ◽  
Qian Wang ◽  
Wei Xu ◽  
...  

Enfuvirtide (T20) is the first U.S. FDA-approved HIV fusion inhibitor-based anti-HIV drug. Its clinical application is limited because of its low potency and short half-life. We previously reported that peptide HP23-E6-IDL, containing both N- and C-terminal anchor-tails, exhibited stronger potency and a better resistance profile than T20. Here we designed an analogous peptide, YIK, by introducing a mutation, T639I, and then a lipopeptide, YIK-C16, by adding palmitic acid (C16) at the C-terminus of YIK. We found that YIK-C16 was 4.4- and 3.6-fold more potent than HP23-E6-IDL and YIK against HIV-1IIIB infection and 13.3- and 10.5-fold more effective than HP23-E6-IDL and YIK against HIV-1Bal infection, respectively. Consistently, the ex vivo anti-HIV-1IIIB activity, as determined by the highest dilution-fold of the serum causing 50% inhibition of HIV-1 infection, of YIK-C16 in the sera of pretreated mice was remarkably higher than that of YIK or HP23-E6-IDL. The serum half-life (t1/2 = 5.9 h) of YIK-C16 was also significantly longer than that of YIK (t1/2 = 1.3 h) and HP23-E6-IDL (t1/2 = 1.0 h). These results suggest that the lipopeptide YIK-C16 shows promise for further development as a new anti-HIV drug with improved anti-HIV-1 activity and a prolonged half-life.


2021 ◽  
Vol 12 ◽  
Author(s):  
Marina Tuyishime ◽  
Amir Dashti ◽  
Katelyn Faircloth ◽  
Shalini Jha ◽  
Jeffrey L. Nordstrom ◽  
...  

Bispecific HIVxCD3 DART molecules that co-engage the viral envelope glycoprotein (Env) on HIV-1-infected cells and the CD3 receptor on CD3+ T cells are designed to mediate the cytolysis of HIV-1-infected, Env-expressing cells. Using a novel ex vivo system with cells from rhesus macaques (RMs) infected with a chimeric Simian-Human Immunodeficiency Virus (SHIV) CH505 and maintained on ART, we tested the ability of HIVxCD3 DART molecules to mediate elimination of in vitro-reactivated CD4+ T cells in the absence or presence of autologous CD8+ T cells. HIVxCD3 DART molecules with the anti-HIV-1 Env specificities of A32 or 7B2 (non-neutralizing antibodies) or PGT145 (broadly neutralizing antibody) were evaluated individually or combined. DART molecule-mediated antiviral activity increased significantly in the presence of autologous CD8+ T cells. In this ex vivo system, the PGT145 DART molecule was more active than the 7B2 DART molecule, which was more active than the A32 DART molecule. A triple combination of the DART molecules exceeded the activity of the individual PGT145 DART molecule. Modified quantitative virus outgrowth assays confirmed the ability of the DART molecules to redirect RM CD3+ T cells to eliminate SHIV-infected RM CD4+ T cells as demonstrated by the decreased propagation of in vitro infection by the infected cells pre-incubated with DART molecules in presence of effector CD8+ T cells. While mediating cytotoxic activity, DART molecules did not increase proinflammatory cytokine production. In summary, combination of HIVxCD3 DART molecules that have broadly-neutralizing and non-neutralizing anti-HIV-1 Env specificities can leverage the host immune system for treatment of HIV-1 infection but will require appropriate reactivation of the latent reservoir.


2010 ◽  
Vol 7 (4) ◽  
pp. 427-432 ◽  
Author(s):  
Mamdooh Ghoneum ◽  
Magda Shaheen

We examined thein vitroanti-human immunodeficiency virus (HIV) activity of MRN-100, an iron-based compound derived from bivalent and tervalent ferrates. MRN-100 action against HIV-1 (SF strain) was tested in primary cultures of peripheral blood mononuclear cells (MNC) by analyzing p24 antigen production and percent survival of MNC infected with HIV. MRN-100 at a concentration of 10% (v/v) inhibited HIV-1 replication in 11 out of 14 samples (79%). The percentage of suppression of p24 antigen was −12.3 to 100% at 10 days post-treatment. MRN-100 also exhibited a significant protective effect in the survival of HIV-1-infected MNC. MNC survival post-treatment was dose dependent, 70.4% ± 8.4, 83.6% ± 10.7 and 90% ± 11.4, at concentrations 2.5, 5 and 10% (v/v), respectively, as compared with 53% ± 4 for HIV-1-infected MNC without treatment. The effect was detected as early as 4 days and continued up to 11 days. Treatment with MRN-100 caused no significant change in proliferative response of MNC alone or cocultured with different mitogens: PHA and Con-A (activators of T cell function) and PWM (activator of CD4+T cell-dependent B cells). We concluded that MRN-100 possesses anti-HIV activityin vitroand without an increase in lymphocyte proliferation, MRN-100 may be a useful agent for treating patients with acquired immunodeficiency syndrome.


2019 ◽  
Vol 6 (7) ◽  
Author(s):  
Giovanna Rappocciolo ◽  
Nicolas Sluis-Cremer ◽  
Charles R Rinaldo

Abstract Background Antiretroviral therapy (ART) has dramatically improved the quality of life of people with HIV-1 infection (PWH). However, it is not curative, and interruption of ART results in rapid viral rebound. Cell-to-cell transfer of HIV-1, or trans infection, is a highly efficient mechanism of virus infection of CD4+ T cells by professional antigen-presenting cells (APCs), that is, dendritic cells (DCs), macrophages, and B lymphocytes. Methods APC from HIV seronegative donors treated with ART in vitro (CCR5 agonist, NRTI, PI and NNRTI, alone or in combination), were loaded with HIV R5-tropic HIVBal and mixed with autologous or heterologous CD4+ T lymphocytes to assess trans infection. Ex vivo APC from chronic HIV-infected MACS participants before and after initiation of ART, were also loaded with HIV R5-tropic HIVBal and tested for trans infection against autologous or heterologous CD4+ T lymphocytes. Virus replication was measured by p24 ELISA. Results Here we show in vitro that antiretroviral drugs did not block the ability of DCs and B cells to trans-infect CD4+ T cells, although they were effective in blocking direct cis infection of CD4+ T cells. Moreover, ex vivo DCs and B cells from ART-suppressed PWH mediated efficient HIV-1 trans infection of CD4+ T cells, which were resistant to direct cis infection. Conclusions Our study supports a role for HIV-1 trans infection in maintenance of the HIV-1 reservoir during ART.


Sign in / Sign up

Export Citation Format

Share Document