scholarly journals Regulatory T Cells as Predictors of Clinical Course in Hospitalised COVID-19 Patients

2021 ◽  
Vol 12 ◽  
Author(s):  
Sara Caldrer ◽  
Cristina Mazzi ◽  
Milena Bernardi ◽  
Marco Prato ◽  
Niccolò Ronzoni ◽  
...  

BackgroundThe host immune response has a prominent role in the progression and outcome of SARS-CoV-2 infection. Lymphopenia has been described as an important feature of SARS-CoV-2 infection and has been associated with severe disease manifestation. Lymphocyte dysregulation and hyper-inflammation have been shown to be associated with a more severe clinical course; however, a T cell subpopulation whose dysfunction correlate with disease progression has yet to be identify.MethodsWe performed an immuno-phenotypic analysis of T cell sub-populations in peripheral blood from patients affected by different severity of COVID-19 (n=60) and undergoing a different clinical evolution. Clinical severity was established based on a modified WHO score considering both ventilation support and respiratory capacity (PaO2/FiO2 ratio). The ability of circulating cells at baseline to predict the probability of clinical aggravation was explored through multivariate regression analyses.ResultsThe immuno-phenotypic analysis performed by multi-colour flow cytometry confirmed that patients suffering from severe COVID-19 harboured significantly reduced circulating T cell subsets, especially for CD4+ T, Th1, and regulatory T cells. Peripheral T cells also correlated with parameters associated with disease severity, i.e., PaO2/FiO2 ratio and inflammation markers. CD4+ T cell subsets showed an important significant association with clinical evolution, with patients presenting markedly decreased regulatory T cells at baseline having a significantly higher risk of aggravation. Importantly, the combination of gender and regulatory T cells allowed distinguishing between improved and worsened patients with an area under the ROC curve (AUC) of 82%.ConclusionsThe present study demonstrates the association between CD4+ T cell dysregulation and COVID-19 severity and progression. Our results support the importance of analysing baseline regulatory T cell levels, since they were revealed able to predict the clinical worsening during hospitalization. Regulatory T cells assessment soon after hospital admission could thus allow a better clinical stratification and patient management.

2018 ◽  
Vol 19 (12) ◽  
pp. 4118 ◽  
Author(s):  
Christopher Funk ◽  
Christopher Petersen ◽  
Neera Jagirdar ◽  
Sruthi Ravindranathan ◽  
David Jaye ◽  
...  

Clinical trials of chimeric antigen receptor (CAR) T cells in hematologic malignancy associate remissions with two profiles of CAR T cell proliferation kinetics, which differ based upon costimulatory domain. Additional T cell intrinsic factors that influence or predict clinical response remain unclear. To address this gap, we report the case of a 68-year-old woman with refractory/relapsed diffuse large B cell lymphoma (DLBCL), treated with tisagenlecleucel (anti-CD19), with a CD137 costimulatory domain (4-1BB) on an investigational new drug application (#16944). For two months post-infusion, the patient experienced dramatic regression of subcutaneous nodules of DLBCL. Unfortunately, her CAR T exhibited kinetics unassociated with remission, and she died of DLBCL-related sequelae. Serial phenotypic analysis of peripheral blood alongside sequencing of the β-peptide variable region of the T cell receptor (TCRβ) revealed distinct waves of oligoclonal T cell expansion with dynamic expression of immune checkpoint molecules. One week prior to CAR T cell contraction, T cell immunoglobulin mucin domain 3 (Tim-3) and programmed cell death protein 1 (PD-1) exhibited peak expressions on both the CD8 T cell (Tim-3 ≈ 50%; PD-1 ≈ 17%) and CAR T cell subsets (Tim-3 ≈ 78%; PD-1 ≈ 40%). These correlative observations draw attention to Tim-3 and PD-1 signaling pathways in context of CAR T cell exhaustion.


2007 ◽  
Vol 204 (5) ◽  
pp. 979-985 ◽  
Author(s):  
Kerstin Lühn ◽  
Cameron P. Simmons ◽  
Edward Moran ◽  
Nguyen Thi Phuong Dung ◽  
Tran Nguyen Bich Chau ◽  
...  

Dengue virus infection is an increasingly important tropical disease, causing 100 million cases each year. Symptoms range from mild febrile illness to severe hemorrhagic fever. The pathogenesis is incompletely understood, but immunopathology is thought to play a part, with antibody-dependent enhancement and massive immune activation of T cells and monocytes/macrophages leading to a disproportionate production of proinflammatory cytokines. We sought to investigate whether a defective population of regulatory T cells (T reg cells) could be contributing to immunopathology in severe dengue disease. CD4+CD25highFoxP3+ T reg cells of patients with acute dengue infection of different severities showed a conventional phenotype. Unexpectedly, their capacity to suppress T cell proliferation and to secrete interleukin-10 was not altered. Moreover, T reg cells suppressed the production of vasoactive cytokines after dengue-specific stimulation. Furthermore, T reg cell frequencies and also T reg cell/effector T cell ratios were increased in patients with acute infection. A strong indication that a relative rise of T reg cell/effector T cell ratios is beneficial for disease outcome comes from patients with mild disease in which this ratio is significantly increased (P < 0.0001) in contrast to severe cases (P = 0.2145). We conclude that although T reg cells expand and function normally in acute dengue infection, their relative frequencies are insufficient to control the immunopathology of severe disease.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4670-4670
Author(s):  
Chang-Qing Xia ◽  
Anna Chernatynskaya ◽  
Clive Wasserfall ◽  
Benjamin Looney ◽  
Suigui Wan ◽  
...  

Abstract Abstract 4670 Anti-thymocyte globulin (ATG) has been used in clinic for the treatment of allograft rejection and autoimmune diseases. However, its mechanism of action is not fully understood. To our knowledge, how ATG therapy affects naïve and memory T cells has not been well investigated. In this study, we have employed nonobese diabetic mouse model to investigate how administration of anti-thymocyte globulin (ATG) affects memory and naïve T cells as well as CD4+CD25+Foxp3+ regulatory T cells in peripheral blood and lymphoid organs; We also investigate how ATG therapy affects antigen-experienced T cells. Kinetic studies of peripheral blood CD4+ and CD8+ T cells post-ATG therapy shows that both populations decline to their lowest levels at day 3, while CD4+ T cells return to normal levels more rapidly than CD8+ T cells. We find that ATG therapy fails to eliminate antigen-primed T cells, which is consistent with the results that ATG therapy preferentially depletes naïve T cells relative to memory T cells. CD4+ T cell responses post-ATG therapy skew to T helper type 2 (Th2) and IL-10-producing T regulatory type 1 (Tr1) cells. Intriguingly, Foxp3+ regulatory T cells (Tregs) are less sensitive to ATG depletion and remain at higher levels following in vivo recovery compared to controls. Of note, the frequency of Foxp3+ Tregs with memory-like immunophenotype is significantly increased in ATG-treated animals, which might play an important role in controlling effector T cells post ATG therapy. In summary, ATG therapy may modulate antigen-specific immune responses through modulation of naïve and memory T cell pools and more importantly through driving T cell subsets with regulatory activities. This study provides important data for guiding ATG therapy in allogenieic hematopoietic stem cell transplantation and other immune-mediated disorders. Disclosures: No relevant conflicts of interest to declare.


2011 ◽  
Vol 18 (6) ◽  
pp. 788-798 ◽  
Author(s):  
M Chiarini ◽  
F Serana ◽  
C Zanotti ◽  
R Capra ◽  
S Rasia ◽  
...  

Background: Interferon-beta is used to reduce disease activity in multiple sclerosis, but its action is incompletely understood, individual treatment response varies among patients, and biological markers predicting clinical benefits have yet to be identified. Since it is known that multiple sclerosis patients have a deficit of the regulatory T-cell subsets, we investigated whether interferon-beta therapy induced modifications of the two main categories of regulatory T cells (Tregs), natural and IL-10-secreting inducible Tr1 subset, in patients who are biologically responsive to the therapy. Methods: T-cell phenotype was determined by flow cytometry, while real-time PCR was used to evaluate interferon-beta bioactivity through MxA determination, and to measure the RNA for IL-10 and CD46 molecule in peripheral blood mononuclear cells stimulated with anti-CD46 and anti-CD3 monoclonal antibodies, which are known to expand a Tr1-like population. Results: Interferon-beta induced a redistribution of natural Treg subsets with a shift of naive Tregs towards the ‘central memory-like’ Treg population that expresses the CCR7 molecule required for the in vivo suppressive activity. Furthermore, in a subgroup of treated patients, the CD46/CD3 co-stimulation, probably through the Tr1-like subset modulation, increased the production of RNA for IL-10 and CD46. The same group showed a lower median EDSS score after two years of therapy. Conclusions: The selective increase of ‘central memory-like’ subset and the involvement of the Tr1-like population may be two of the mechanisms by which interferon-beta achieves its beneficial effects. The quantification of RNA for IL-10 and CD46 could be used to identify patients with a different response to interferon-beta therapy.


2021 ◽  
Author(s):  
Xuefei Wang ◽  
Xiangru Shen ◽  
Shan Chen ◽  
Hongyi Liu ◽  
Ni Hong ◽  
...  

AbstractClassic T cell subsets are defined by a small set of cell surface markers, while single cell RNA sequencing (scRNA-seq) clusters cells using genome-wide gene expression profiles. The relationship between scRNA-seq Clustered-Populations (scCPops) and cell surface marker-defined classic T cell subsets remain unclear. Here, we interrogated 6 bead-enriched T cell subsets with 62,235 single cell transcriptomes and re-grouped them into 9 scCPops. Bead-enriched CD4 Naïve and CD8 Naïve were mainly clustered into their scCPop counterparts, while cells from the other T cell subsets were assigned to multiple scCPops including mucosal-associated invariant T cells and natural killer T cells. The multiple T cell subsets that form a single scCPop exhibited similar expression pattern, but not vice versa, indicating scCPops are much homogeneous cell populations with similar cell states. Interestingly, we discovered and named IFNhi T, a new T cell subpopulation that highly expressed Interferon Signaling Associated Genes (ISAGs). We further enriched IFNhi T by FACS sorting of BST2 for scRNA-seq analyses. IFNhi T cluster disappeared on tSNE plot after removing ISAGs, while IFNhi T cluster showed up by tSNE analyses of ISAGs alone, indicating ISAGs are the major contributor of IFNhi T cluster. BST2+ T cells and BST2− T cells showing different efficiencies of T cell activation indicates high level of ISAGs may contribute to quick immune responses.


2012 ◽  
Vol 2012 ◽  
pp. 1-32 ◽  
Author(s):  
Bo Jin ◽  
Tao Sun ◽  
Xiao-Hong Yu ◽  
Ying-Xiang Yang ◽  
Anthony E. T. Yeo

Invading pathogens have unique molecular signatures that are recognized by Toll-like receptors (TLRs) resulting in either activation of antigen-presenting cells (APCs) and/or costimulation of T cells inducing both innate and adaptive immunity. TLRs are also involved in T-cell development and can reprogram Treg cells to become helper cells. T cells consist of various subsets, that is, Th1, Th2, Th17, T follicular helper (Tfh), cytotoxic T lymphocytes (CTLs), regulatory T cells (Treg) and these originate from thymic progenitor thymocytes. T-cell receptor (TCR) activation in distinct T-cell subsets with different TLRs results in differing outcomes, for example, activation of TLR4 expressed in T cells promotes suppressive function of regulatory T cells (Treg), while activation of TLR6 expressed in T cells abrogates Treg function. The current state of knowledge of regarding TLR-mediated T-cell development and differentiation is reviewed.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3159-3159 ◽  
Author(s):  
Krzysztof Giannopoulos ◽  
Malgorzata Kowal ◽  
Anna Dmoszynska ◽  
Jacek Rolinski ◽  
Kamila Mazurek ◽  
...  

Abstract There is an accumulation of in vivo (graft-versus-leukemia effect) and in vitro (spontaneous remissions after infections) data providing evidence that CLL might be effectively targeted by T-cell based immunotherapy. Earlier, we characterized the receptor for hyaluronic acid mediated motility (RHAMM) as antigen associated with proliferation and negative prognosis in CLL. We also demonstrated that RHAMM-derived epitope(R3)- primed T cells were able to lyse RHAMM+ target CLL cells. Therefore, we initiated a small phase I/II clinical trial with R3 peptide vaccination for patients with CLL. Six CLL patients in Binet stage 0 of the disease were vaccinated four times at a biweekly interval with HLA-A2 restricted RHAMM-derived epitope R3 (ILSLELMKL, 300μg/dose on day 3) emulsified in incomplete Freund’s adjuvant (IFA) with concomitant administration of GM-CSF (100μg/dose, days 1–5). R3-specific T-cell responses were assessed by tetramer staining and ELISPOT assays. T-cell subsets which play a role in regulation of immune responses including CD3+CD4+CD25hiCD127loFOXP3+ T regs, Th17, CD8+CD137+, CD8+CD103+ and IL-17 producing CD8+ T cells (CD8+IL-17+) were evaluated by flow cytometry. No severe adverse events greater than CTC Io skin toxicity could be observed. Four of six patients showed a reduction of WBC during vaccination. Although these WBC changes did not meet the NCI response criteria, we described these favorable hematological changes achieved in short period of immunotherapy as hematological improvement (defined as at least 20% reduction of WBC during vaccination). The immune responses were found in 5/6 patients as assessed by tetramer-staining (positive response defined as an increase of R3-specific CD8+ T cell frequency by more than 100% after vaccination) and confirmed in 4/5 as assessed by ELISPOT assay. Patients included in this study showed median Tregs frequency of 4.2%, range: 2.5–8%. There was no significant difference of Tregs percentages between patients who improved clinically when compared with non-responders (median 6.1% vs. 3.7%). Vaccination induced Tregs in 4 patients (2 non-responders and 2 responders). Two other patients who improved hematologically did not significantly change frequency of Tregs or even reduced it during vaccination (Figure 1). Median expression of CD103 on CD8+ T cells was 1.84%, range: 0.41–5.63%. In one non-responder, we observed an increase in frequency of CD103+CD8+ T-cells during vaccination from 1.46% to 2.56%. During vaccination, changes in CD8+CD103+ T cell subset did not correlate with the frequency of Tregs, nonetheless we could find an inverse correlation with inflammatory Th17 T cells (r2=−0.5, p<0.05). We could find a correlation between the frequency of Tregs and activated CD8+CD69+ T cells (r2=0.51, p<0.05). Interestingly, CD8+CD137+ cells correlated with CD8+IL-17+ T cells (r2=0.54, p<0.05). In conclusion, peptide vaccination in CLL patients is safe and feasible to mount immune responses against the tumor antigen RHAMM. Most of patients benefited hematologically from vaccination. Although in some patients we observed an induction of tumor-specific T cells without induction of Tregs there is a rationale to add novel active agents against Tregs in future vaccination trials. Figure 1. Peptide vaccination induced changes in WBC, percentages of regulatory T cells (Tregs) as well as R3 specific tetramer ‘CD’ T cells (tetra) of A CLL patients. Patients B, C, E and F improved hematologically during vaccination. Figure 1. Peptide vaccination induced changes in WBC, percentages of regulatory T cells (Tregs) as well as R3 specific tetramer ‘CD’ T cells (tetra) of A CLL patients. Patients B, C, E and F improved hematologically during vaccination.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3280-3280
Author(s):  
Kazuyuki Murase ◽  
Yutaka Kawano ◽  
Jeremy Ryan ◽  
Ken-ichi Matsuoka ◽  
Gregory Bascug ◽  
...  

Abstract Abstract 3280 CD4+CD25+Foxp3+ regulatory T cells (Treg) play an important role in the maintenance of self-tolerance and immune homeostasis and Treg deficiency contributes to the development of autoimmune diseases. CD4Treg, conventional CD4 T cells (Tcon) and CD8 T cells are derived from lymphocyte progenitor cells that differentiate into distinct functional subsets in the thymus before export to the peripheral circulation. As T cells differentiate and expand in the periphery, each T cell subset is differentially regulated and subjected to distinct homeostatic signals. For example, interleukin-2 (IL-2) is a critical regulator of Treg development, expansion and survival and lack of IL-2 results in selective Treg deficiency. In regulating Treg homeostasis, IL-2 has multiple and distinct effects on Treg differentiation, proliferation and susceptibility to apoptosis. To determine the mechanism whereby IL-2 affects susceptibility of Treg to apoptosis, we used a new flow cytometry-based assay (BH3 profiling) to measure the mitochondrial membrane depolarization in response to a panel of pro-apoptotic BH3 peptides (BIM, BID, BAD, NOXA, PUMA, BMF, HRK). This assay allowed us to compare “priming” which we define as susceptibility to BH3 peptide-induced mitochondrial membrane depolarization in different T cell subsets, including CD4 Treg, CD4 Tcon and CD8 T cells. We also examined cell surface expression of CD95 death receptor (Fas) and cytoplasmic expression of Bcl-2 and Ki67 as additional measures of susceptibility to apoptosis and proliferation in each subset. In resting blood obtained from healthy donors (n=10), CD4 Treg were more “primed” than either CD4 Tcon or CD8 T cells when exposed to several BH3 peptides (PUMA, BMF and the combination of BAD+NOXA). CD4 Treg were also found to have decreased expression of Bcl-2 and increased expression of CD95 and Ki67 compared to CD4 Tcon or CD8 T cells. Thus, Treg in healthy individuals have higher proliferative activity and are more susceptible to apoptosis than other major T cell subsets through both mitochondrial and death receptor pathways. To establish the functional effects of TCR stimulation and IL-2, CD4 Treg, CD4 Tcon and CD8 T cells were purified by cell sorting and cultured for 5–6 days with or without TCR stimulation (1μg/ml anti-CD3 + 1μg/ml anti-CD28) and IL-2 (100 IU/ml). Results were compared to cells cultured in media alone. Results are summarized in the table below. CD4 Tcon and CD8 T cells responded in a similar fashion to either TCR stimulation alone or TCR plus IL-2. This response included increased BH3 priming, reduced expression of Bcl-2, increased expression of CD95 and increased proliferation (Ki-67). IL-2 alone had no effect on CD4 Tcon or CD8 T cells. In contrast, TCR stimulation alone had no effect on CD4 Treg but IL-2 alone reduced BH3 priming and increased expression of Bcl-2. Combined TCR stimulation plus IL-2 in Treg increased BH3 priming, reduced expression of Bcl-2, increased expression of CD95 and increased proliferation. Thus, TCR stimulation reversed the anti-apoptotic effects of IL-2 alone and markedly increased susceptibility of Treg to apoptosis. When compared with CD4 Tcon and CD8 T cells, these studies demonstrate distinct effects of TCR stimulation and IL-2 on both mitochondrial and death receptor pathways of apoptosis in CD4 Treg and define mechanisms whereby TCR stimulation and IL-2 interact to regulate Treg homeostasis. Table 1. Effects of in vitro TCR stimulation and IL-2 on apoptotic pathways of T cell subsets TCR Stimulation IL-2 TCR + IL2 BH3 priming Bcl-2 CD95 Ki67 BH3 priming Bcl-2 CD95 Ki67 BH3 priming Bcl-2 CD95 Ki67 CD4 Treg – – – – ↓ ↑ – – ↑ ↓ ↑ ↑ CD4 Tcon ↑ ↓ ↑ ↑ – – – – ↑ ↓ ↑ ↑ CD8 ↑ ↓ ↑ ↑ – – – – ↑ ↓ ↑ ↑ Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 125 (15) ◽  
pp. 2418-2427 ◽  
Author(s):  
Xiaomei Wang ◽  
Jin Su ◽  
Alexandra Sherman ◽  
Geoffrey L. Rogers ◽  
Gongxian Liao ◽  
...  

Key Points Coadministering FIX orally and systemically induces tolerance via complex immune regulation, involving tolerogenic dendritic and T-cell subsets. Induced CD4+CD25−LAP+ regulatory T cells with increased IL-10 and TGF-β expression and CD4+CD25+ regulatory T cells suppress antibody formation against FIX.


Sign in / Sign up

Export Citation Format

Share Document