scholarly journals A Genome-Wide CRISPR/Cas9-Based Screen Identifies Heparan Sulfate Proteoglycans as Ligands of Killer-Cell Immunoglobulin-Like Receptors

2021 ◽  
Vol 12 ◽  
Author(s):  
Klara Klein ◽  
Angelique Hölzemer ◽  
Tim Wang ◽  
Tae-Eun Kim ◽  
Haley L. Dugan ◽  
...  

While human leukocyte antigen (HLA) and HLA-like proteins comprise an overwhelming majority of known ligands for NK-cell receptors, the interactions of NK-cell receptors with non-conventional ligands, particularly carbohydrate antigens, is less well described. We previously found through a bead-based HLA screen that KIR3DS1, a formerly orphan member of the killer-cell immunoglobulin-like receptor (KIR) family, binds to HLA-F. In this study, we assessed the ligand binding profile of KIR3DS1 to cell lines using Fc fusion constructs, and discovered that KIR3DS1-Fc exhibited binding to several human cell lines including ones devoid of HLA. To identify these non-HLA ligands, we developed a magnetic enrichment-based genome-wide CRISPR/Cas9 knock-out screen approach, and identified enzymes involved in the biosynthesis of heparan sulfate as crucial for the binding of KIR3DS1-Fc to K562 cells. This interaction between KIR3DS1 and heparan sulfate was confirmed via surface plasmon resonance, and removal of heparan sulfate proteoglycans from cell surfaces abolished KIR3DS1-Fc binding. Testing of additional KIR-Fc constructs demonstrated that KIR family members containing a D0 domain (KIR3DS1, KIR3DL1, KIR3DL2, KIR2DL4, and KIR2DL5) bound to heparan sulfate, while those without a D0 domain (KIR2DL1, KIR2DL2, KIR2DL3, and KIR2DS4) did not. Overall, this study demonstrates the use of a genome-wide CRISPR/Cas9 knock-out strategy to unbiasedly identify unconventional ligands of NK-cell receptors. Furthermore, we uncover a previously underrecognized binding of various activating and inhibitory KIRs to heparan sulfate proteoglycans that may play a role in NK-cell receptor signaling and target-cell recognition.

Blood ◽  
2002 ◽  
Vol 100 (6) ◽  
pp. 1935-1947 ◽  
Author(s):  
Sherif S. Farag ◽  
Todd A. Fehniger ◽  
Loredana Ruggeri ◽  
Andrea Velardi ◽  
Michael A. Caligiuri

AbstractNatural killer (NK) cells have held great promise for the immunotherapy of cancer for more than 3 decades. However, to date only modest clinical success has been achieved manipulating the NK cell compartment in patients with malignant disease. Progress in the field of NK cell receptors has revolutionized our concept of how NK cells selectively recognize and lyse tumor and virally infected cells while sparing normal cells. Major families of cell surface receptors that inhibit and activate NK cells to lyse target cells have been characterized, including killer cell immunoglobulinlike receptors (KIRs), C-type lectins, and natural cytotoxicity receptors (NCRs). Further, identification of NK receptor ligands and their expression on normal and transformed cells completes the information needed to begin development of rational clinical approaches to manipulating receptor/ligand interactions for clinical benefit. Indeed, clinical data suggest that mismatch of NK receptors and ligands during allogeneic bone marrow transplantation may be used to prevent leukemia relapse. Here, we review how NK cell receptors control natural cytotoxicity and novel approaches to manipulating NK receptor-ligand interactions for the potential benefit of patients with cancer.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2235-2235
Author(s):  
Sandra van Bijnen ◽  
Marian Withaar ◽  
Frank Preijers ◽  
Arnold van der Meer ◽  
Theo de Witte ◽  
...  

Abstract Abstract 2235 Background: Paroxysmal Nocturnal Hemoglobinuria (PNH) is a disease characterized by hemolysis due to an acquired mutation in the X-linked PIG-A gene in the hematopoietic stem cell (HSC). This leads to a clone of hematopoietic cells with deficient expression of glycosyl phosphatidyl inositol (GPI) anchored proteins at the cell membrane. The clinical evolution of PNH arises through clonal expansion of PIG-A mutated HSC which is insufficiently explained by the PIG-A mutation alone. Hypothetically, clonal expansion could result from autoreactive T cells selectively attacking normal HSC, whereas GPI deficient HSC are unharmed. Methods and Results: we investigated the presence of potentially autoreactive T cells in peripheral blood of patients with PNH (n = 39) by flow cytometry. We compared T cell subset frequencies and absolute numbers with healthy controls (n = 25) using Mann-Whitney U test. In PNH patients, T cells expressing the NK cell marker CD56 were significantly elevated, both in percentage (p < 0.001) and in absolute numbers (p < 0.01). Furthermore, the frequency of T cells expressing the activating NK cell receptors (NKRs) NKG2D (p < 0.01), NKG2C (p < 0.01), and KIR2DS4 (p = 0.01) was significantly increased. KIR2DS4+, NKG2C+ and NKG2D+ T cells mainly consist of highly differentiated effector memory CD45RA+ T cells (TEMRA) (KIR2DS4: median 90%, range 70–96%, NKG2C: median 83%, range 49–99%, NKG2D: median 40%, range 38–66%). A highly variable proportion of these T cell populations consists of γδ T cells (KIR2DS4: median 28%, range 6–72%, NKG2C: median 36%, range 3–75%, NKG2D: median 11%, range 7–40%). By 10 color flow cytometry, we examined NKR coexpression patterns. KIR2DS4+ and NKG2C+ T cells mainly coexpress either only NKG2D (KIR2DS4+ T cells: median 24%, range 2 – 74%, NKG2C+ T cells: median 21%, range 3–71%), or a combination of NKG2D, NKG2C and CD158b1/b2,j, but not inhibitory NKG2A (KIR2DS4+ T cells: median 16%, range 1 – 55%, NKG2C+ T cells: median 20%, range 1–60%). In contrast, NKG2D+ T cells generally do not express any other NKRs tested (median 77%, range 53–84%). NKG2D+ KIR2DS4+ cytotoxic T lymphocyte (CTL) lines isolated from PNH patient peripheral blood and bone marrow display high cytolytic activity towards CD34+ hematopoietic progenitor cell lines and MHC class I deficient K562 cells, suggesting T cell receptor independent cytolytic activity. These NKR+ CTL lines are capable of differentially lysing GPI+ and GPI- hematopoietic cell lines, however not in all cell line models and CTL lines. This suggests that multiple factors, as for example the highly activated status of in vitro cultured CTLs, influence whether or not GPI dependent lysis occurs. Conclusion: The increased frequency of T cells expressing activating NK cell receptors KIR2DS4, NKG2C, and NKG2D, with a CD8+ effector-memory phenotype and differences in cytotoxicity towards GPI+ and GPI- hematopoietic cell lines suggests that these T cell populations may be involved in bone marrow failure and expansion of PNH clones. Disclosures: Muus: Alexion: member of advisory board.


2009 ◽  
Vol 182 (6) ◽  
pp. 3618-3627 ◽  
Author(s):  
John A. Hammond ◽  
Lisbeth A. Guethlein ◽  
Laurent Abi-Rached ◽  
Achim K. Moesta ◽  
Peter Parham

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Ramin Dubey ◽  
Peter van Kerkhof ◽  
Ingrid Jordens ◽  
Tomas Malinauskas ◽  
Ganesh V Pusapati ◽  
...  

R-spondins (RSPOs) amplify WNT signaling during development and regenerative responses. We previously demonstrated that RSPOs 2 and 3 potentiate WNT/β-catenin signaling in cells lacking leucine-rich repeat-containing G-protein coupled receptors (LGRs) 4, 5 and 6 (Lebensohn and Rohatgi, 2018). We now show that heparan sulfate proteoglycans (HSPGs) act as alternative co-receptors for RSPO3 using a combination of ligand mutagenesis and ligand engineering. Mutations in RSPO3 residues predicted to contact HSPGs impair its signaling capacity. Conversely, the HSPG-binding domains of RSPO3 can be entirely replaced with an antibody that recognizes heparan sulfate (HS) chains attached to multiple HSPGs without diminishing WNT-potentiating activity in cultured cells and intestinal organoids. A genome-wide screen for mediators of RSPO3 signaling in cells lacking LGRs 4, 5 and 6 failed to reveal other receptors. We conclude that HSPGs are RSPO co-receptors that potentiate WNT signaling in the presence and absence of LGRs.


2021 ◽  
Vol 22 (11) ◽  
pp. 5798
Author(s):  
Shoko Tokumoto ◽  
Yugo Miyata ◽  
Ruslan Deviatiiarov ◽  
Takahiro G. Yamada ◽  
Yusuke Hiki ◽  
...  

The Pv11, an insect cell line established from the midge Polypedilum vanderplanki, is capable of extreme hypometabolic desiccation tolerance, so-called anhydrobiosis. We previously discovered that heat shock factor 1 (HSF1) contributes to the acquisition of desiccation tolerance by Pv11 cells, but the mechanistic details have yet to be elucidated. Here, by analyzing the gene expression profiles of newly established HSF1-knockout and -rescue cell lines, we show that HSF1 has a genome-wide effect on gene regulation in Pv11. The HSF1-knockout cells exhibit a reduced desiccation survival rate, but this is completely restored in HSF1-rescue cells. By comparing mRNA profiles of the two cell lines, we reveal that HSF1 induces anhydrobiosis-related genes, especially genes encoding late embryogenesis abundant proteins and thioredoxins, but represses a group of genes involved in basal cellular processes, thus promoting an extreme hypometabolism state in the cell. In addition, HSF1 binding motifs are enriched in the promoters of anhydrobiosis-related genes and we demonstrate binding of HSF1 to these promoters by ChIP-qPCR. Thus, HSF1 directly regulates the transcription of anhydrobiosis-related genes and consequently plays a pivotal role in the induction of anhydrobiotic ability in Pv11 cells.


Sign in / Sign up

Export Citation Format

Share Document