scholarly journals General Hydrography of the Beagle Channel, a Subantarctic Interoceanic Passage at the Southern Tip of South America

2021 ◽  
Vol 8 ◽  
Author(s):  
Ricardo Giesecke ◽  
Jacobo Martín ◽  
Andrea Piñones ◽  
Juan Höfer ◽  
Jose Garcés-Vargas ◽  
...  

The Beagle Channel (BC) is a long and narrow interoceanic passage (∼270 km long and 1–12 km wide) with west-east orientation and complex bathymetry connecting the Pacific and Atlantic oceans at latitude 55°S. This study is the first integrated assessment of the main oceanographic features of the BC, using recent oceanographic observations from cruises, moored instruments and historical observations. The waters transported into the BC are supplied mainly by the Cape Horn Current, which carries Subantarctic Water (SAAW) at depth (100 m below surface) along the Pacific Patagonian continental shelf break. SAAW enters the continental shelf via a submarine canyon at the western entrance of the BC. The SAAW is diluted by fresh, nutrient depleted (nitrate, phosphate and silicic acid) Estuarine Water (EW) from Cordillera Darwin Ice Field (CDIF) forming modified SAAW (mSAAW). Freshwater inputs from the CDIF generate a two-layer system with a sharp pycnocline which delimits the vertical distribution of phytoplankton fluorescence (PF). Two shallow sills (<70 m) along the BC contribute to EW and mSAAW mixing and the homogenization of the entire water column east of the sills, coherent with Bernoulli aspiration. The central section of the BC, extending ∼100 km toward the east, is filled by a salty (31–32) variety of EW. In winter, this central section is nearly vertically homogeneous with low nutrient concentrations (0.9–1.1 μM PO4 and 7.5–10 μM NO3) and PF. The temporal variability of seawater temperature from 50 to 195 m in the central section of the BC was found to be mostly dominated by the annual and semiannual cycles and influenced by tidal forcing. The middle section of the BC was less influenced by oceanic inputs and its basin-like structure most likely favors retention, which was observed from the weakly stratified water column at the mooring site. Toward the east, the central section bathymetry is disrupted at Mackinlay Strait where another shallow sill separates the middle channel from the shallow eastern entrance that connects to the Atlantic Ocean. In this section, a weakly stratified two-layer system is formed when the eastward surface outflow (salty-EW) flows over a deeper, denser tongue of oceanic mSAAW.

2013 ◽  
Vol 10 (10) ◽  
pp. 6419-6432 ◽  
Author(s):  
C. Du ◽  
Z. Liu ◽  
M. Dai ◽  
S.-J. Kao ◽  
Z. Cao ◽  
...  

Abstract. Based on four cruises covering a seasonal cycle in 2009–2011, we examined the impact of the Kuroshio intrusion, featured by extremely oligotrophic waters, on the nutrient inventory in the central northern South China Sea (NSCS). The nutrient inventory in the upper 100 m of the water column in the study area ranged from ∼200 to ∼290 mmol m−2 for N + N (nitrate plus nitrite), from ∼13 to ∼24 mmol m−2 for soluble reactive phosphate and from ∼210 to ∼430 mmol m−2 for silicic acid. The nutrient inventory showed a clear seasonal pattern with the highest value appearing in summer, while the N + N inventory in spring and winter had a reduction of ∼13 and ∼30%, respectively, relative to that in summer. To quantify the extent of the Kuroshio intrusion, an isopycnal mixing model was adopted to derive the proportional contribution of water masses from the SCS proper and the Kuroshio along individual isopycnal surfaces. The derived mixing ratio along the isopycnal plane was then employed to predict the genuine gradients of nutrients under the assumption of no biogeochemical alteration. These predicted nutrient concentrations, denoted as Nm, are solely determined by water mass mixing. Results showed that the nutrient inventory in the upper 100 m of the NSCS was overall negatively correlated to the Kuroshio water fraction, suggesting that the Kuroshio intrusion significantly influenced the nutrient distribution in the SCS and its seasonal variation. The difference between the observed nutrient concentrations and their corresponding Nm allowed us to further quantify the nutrient removal/addition associated with the biogeochemical processes on top of the water mass mixing. We revealed that the nutrients in the upper 100 m of the water column had a net consumption in both winter and spring but a net addition in fall.


2009 ◽  
Vol 24 (1) ◽  
pp. 1
Author(s):  
J. O. Navarro Lozano ◽  
E. H. Nava Sánchez ◽  
L. Godinez-Orta ◽  
J. Murillo-Jimenez

Bahía San Lucas está localizada en la punta sur de la Península de Baja California, por lo que recibe el oleaje de alta energía del Océano Pacífico. El análisis morfológico y sedimentológico del litoral y del fondo marino de la Bahía San Lucas, a partir del levantamiento batimétrico y del análisis de los parámetros texturales del sedimento permitió conocer la relación que existe entre las geoformas y el comportamiento sedimentológico. La morfología y orientación de las puntas que protegen a la bahía, así como la presencia temporal del abanico-delta El Salto en la porción central de la misma, condicionan los procesos de refracción y difracción del olaje. Así, el litoral de la bahía se puede dividir en dos zonas, en donde los procesos energéticos del oleaje y agente transportante son diferentes entre ellas y determinan la morfología y distribución de sedimentos en el sistema playero. El relieve del fondo marino de la bahía está dominado por la presencia del cañón submarino San Lucas, cuya cabecera se proxima hasta el pie de la playa, en la zona más interna de la bahía. Dicho cañón condiciona el desarrollo de la plataforma, la cual es de sólo 1.5 km de ancho, con profundidad máxima de 50 m. La poca profundidad de la plataforma, que permite que el oleaje interactúe con el fondo, así como la presencia del cañón submarino, condicionan la distribución de sedimentos del fondo marino de la bahía. Morphology and sediments of the beach and shelf of the Bahía San Lucas, Baja California Sur, México Bahía San Lucas is located at the southern tip of the Baja California peninsula, thus it receives high energy waves from the Pacific Ocean. The morphology of the coastline and marine bottom of the bay was interpreted based on a bathymetric survey and beach profiles, while the characteristics of the sediments were obtained through a textural analysis. Both, morphology and sedimentology allowed us to know the relationship between landforms and the sedimentological behavior. The geometry and orientation of the limiting points of the bay and the temporary presence of the fan-delta El Salto in the central portion, control the processes of wave refraction and diffraction. Thus, the coastline of the bay can be divided into two areas, where the wave energy processes and the transporting agent are different from each other and determine the morphology and sediment distribution of the beach. Seafloor topography of the bay is dominated by the presence of the San Lucas submarine canyon, whose head is just at the foot of he beach, in the innermost area of the bay. This canyon controls the development of the peninsular shelf, which is only 1.5 km wide with a maximum depth of 50m. This shallow depth of the shelf, which allows the waves interact with seabed, and the presence of the submarine canyon are the responsible for the distribution of sediments in the seabed of the bay.


Author(s):  
Elena Pavoni ◽  
Elisa Petranich ◽  
Sergio Signore ◽  
Giorgio Fontolan ◽  
Stefano Covelli

Mercury (Hg) contamination in the Gulf of Trieste (northern Adriatic Sea) due to mining activity in Idrija (Slovenia) still represents an issue of environmental concern. The Isonzo/Soča River’s freshwater inputs have been identified as the main source of Hg into the Gulf, especially following periods of medium-high discharge. This research aims to evaluate the occurrence and distribution of dissolved (DHg) and particulate (PHg) Hg along the water column in the northernmost sector of the Gulf, a shallow and sheltered embayment suitable for the accumulation of fine sediments. Sediment and water samples were collected under unperturbed and perturbed environmental conditions induced by natural and anthropogenic factors. Mercury in the sediments (0.77–6.39 µg g−1) and its relationship to grain size were found to be consistent with previous research focused on the entire Gulf, testifying to the common origin of the sediment. Results showed a notable variability of DHg (<LOD–149 ng L−1) and PHg (0.39–12.5 ng L−1) depending on the interaction between riverine and marine hydrological conditions. Mercury was found to be mainly partitioned in the suspended particles, especially following periods of high discharge, thus confirming the crucial role of the river inputs in regulating PHg distribution in the Gulf.


2009 ◽  
Vol 6 (4) ◽  
pp. 7853-7896 ◽  
Author(s):  
M. Roy-Barman

Abstract. The "boundary scavenging" box model is a cornerstone of our understanding of the particle-reactive radionuclide fluxes between the open ocean and the ocean margins. However, it does not describe the radionuclide profiles in the water column. Here, I present the transport-reaction equations for radionuclides transported vertically by reversible scavenging on settling particles and laterally by horizontal currents between the margin and the open ocean. Analytical solutions of these equations are compared with existing data. In the Pacific Ocean, the model produces "almost" linear 230Th profiles (as observed in the data) despite lateral transport. However, omitting lateral transport biased the 230Th based particle flux estimates by as much as 50%. 231Pa profiles are well reproduced in the whole water column of the Pacific Margin and from the surface down to 3000 m in the Pacific subtropical gyre. Enhanced bottom scavenging or inflow of 231Pa-poor equatorial water may account for the model-data discrepancy below 3000 m. The lithogenic 232Th is modelled using the same transport parameters as 230Th but a different source function. The main source of 232Th scavenged in the open Pacific is advection from the ocean margin, whereas a net flux of 230Th produced in the open Pacific is advected and scavenged at the margin, illustrating boundary exchange. In the Arctic Ocean, the model reproduces 230Th measured profiles that the uni-dimensional scavenging model or the scavenging-ventilation model failed to explain. Moreover, if lateral transport is ignored, the 230Th based particle settling speed may by underestimated by a factor 4 at the Arctic Ocean margin. The very low scavenging rate in the open Arctic Ocean combined with the enhanced scavenging at the margin accounts for the lack of high 231Pa/230Th ratio in arctic sediments.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2658
Author(s):  
Nixon Bahamon ◽  
Jacopo Aguzzi ◽  
Miguel Ángel Ahumada-Sempoal ◽  
Raffaele Bernardello ◽  
Charlotte Reuschel ◽  
...  

Since 2014, the global land and sea surface temperature has scaled 0.23 °C above the decadal average (2009–2018). Reports indicate that Mediterranean Sea temperatures have been rising at faster rates than in the global ocean. Oceanographic time series of physical and biogeochemical data collected from an onboard and a multisensor mooring array in the northwestern Mediterranean Sea (Blanes submarine canyon, Balearic Sea) during 2009–2018 revealed an abrupt temperature rising since 2014, in line with regional and global warming. Since 2014, the oligotrophic conditions of the water column have intensified, with temperature increasing 0.61 °C on the surface and 0.47 °C in the whole water column in continental shelf waters. Water transparency has increased due to a decrease in turbidity anomaly of −0.1 FTU. Since 2013, inshore chlorophyll a concentration remained below the average (−0.15 mg·l−1) and silicates showed a declining trend. The mixed layer depth showed deepening in winter and remained steady in summer. The net surface heat fluxes did not show any trend linked to the local warming, probably due to the influence of incoming offshore waters produced by the interaction between the Northern Current and the submarine canyon. Present regional and global water heating pattern is increasing the stress of highly diverse coastal ecosystems at unprecedented levels, as reported by the literature. The strengthening of the oligotrophic conditions in the study area may also apply as a cautionary warning to similar coastal ecosystems around the world following the global warming trend.


Sign in / Sign up

Export Citation Format

Share Document