scholarly journals Effects of Natural and Anthropogenic Stressors on Fucalean Brown Seaweeds Across Different Spatial Scales in the Mediterranean Sea

2021 ◽  
Vol 8 ◽  
Author(s):  
Sotiris Orfanidis ◽  
Fabio Rindi ◽  
Emma Cebrian ◽  
Simonetta Fraschetti ◽  
Ina Nasto ◽  
...  

Algal habitat-forming forests composed of fucalean brown seaweeds (Cystoseira, Ericaria, and Gongolaria) have severely declined along the Mediterranean coasts, endangering the maintenance of essential ecosystem services. Numerous factors determine the loss of these assemblages and operate at different spatial scales, which must be identified to plan conservation and restoration actions. To explore the critical stressors (natural and anthropogenic) that may cause habitat degradation, we investigated (a) the patterns of variability of fucalean forests in percentage cover (abundance) at three spatial scales (location, forest, transect) by visual estimates and or photographic sampling to identify relevant spatial scales of variation, (b) the correlation between semi-quantitative anthropogenic stressors, individually or cumulatively (MA-LUSI index), including natural stressors (confinement, sea urchin grazing), and percentage cover of functional groups (perennial, semi-perennial) at forest spatial scale. The results showed that impacts from mariculture and urbanization seem to be the main stressors affecting habitat-forming species. In particular, while mariculture, urbanization, and cumulative anthropogenic stress negatively correlated with the percentage cover of perennial fucalean species, the same stressors were positively correlated with the percentage cover of the semi-perennial Cystoseira compressa and C. compressa subsp. pustulata. Our results indicate that human impacts can determine spatial patterns in these fragmented and heterogeneous marine habitats, thus stressing the need of carefully considering scale-dependent ecological processes to support conservation and restoration.

2017 ◽  
Author(s):  
Florentine Riquet ◽  
Cathy Liautard-Haag ◽  
Lucy Woodall ◽  
Carmen Bouza ◽  
Patrick Louisy ◽  
...  

AbstractDiverging semi-isolated lineages either meet in narrow clinal hybrid zones, or have a mosaic distribution associated with environmental variation. Intrinsic reproductive isolation is often emphasized in the former and local adaptation in the latter, although both can contribute to isolation. Rarely these two patterns of spatial distribution are reported in the same study system. Here we report that the long-snouted seahorse Hippocampus guttulatus is subdivided into discrete panmictic entities by both types of hybrid zones. Along the European Atlantic coasts, a northern and a southern lineage meet in the southwest of France where they coexist in sympatry with little hybridization. In the Mediterranean Sea, two lineages have a mosaic distribution, associated with lagoon-like and marine habitats. A fifth lineage was identified in the Black Sea. Genetic homogeneity over large spatial scales contrasts with isolation maintained in sympatry or close parapatry at a fine scale. A high variation in locus-specific introgression rates provides additional evidence that partial reproductive isolation must be maintaining the divergence. Surprisingly, fixed differences between lagoon and marine populations in the Mediterranean Sea belong to the most differentiated SNPs between the two Atlantic lineages, against the genome-wide pattern of structure. These parallel outlier SNPs cluster on a single chromosome-wide island of differentiation. Since Atlantic lineages do not match the lagoon-sea habitat variation, genetic parallelism at the genomic island suggests a shared genetic barrier contributes to reproductive isolation in contrasting contexts -i.e. spatial vs. ecological. We discuss how a genomic hotspot of parallel differentiation could have evolved and become associated either with space or with a patchy environment in a single study system.


2021 ◽  
Author(s):  
Roser Casas-Mulet ◽  
Joachim Pander ◽  
Maximilian Prietzel ◽  
Juergen Geist

<p>Increased deposition of fine sediments in streams affects a range of key ecosystem processes across the sediment-water interface, and it is a critical aspect of river habitat degradation and restoration. Understanding the mechanisms leading to fine sediment accumulation along and across streambeds, and their affectation to ecological processes is therefore essential for comprehending human impacts on river ecosystems and inform river restoration. Here, we introduce the HydroEcoSedimentary Tool (HEST) as an integrated approach to assess hydro-sedimentary and ecologically relevant processes together. The HEST integrates the estimation of a range of processes occurring in the interstitial zone, including sedimentary (fine sediment accumulation and fine sediment loss upon retrieval), hydraulic (hydraulic conductivity), geochemical (water quality and temperature) and ecological (with a focus on brown trout early life stages).</p><p>We tested the HEST application in two rivers with different degrees of morphological degradation in Germany. The HEST was successful in recording the set of key hydrosedimentary and ecologically relevant factors, and in providing a mechanistic linkage between and biological effect in a site-specific context. The HEST data confirmed that salmonid embryo mortality could be linked to high fine deposition in gravel beds. In addition, the HEST illustrated that such mortality could be linked explicitly to interstitial depths and to different infiltration pathways for fines (e.g. vertical vs. horizontal). Although interstitial water quality and temperature were within ecological thresholds and did not show significant differences with surface water, it was still useful to monitor such variables and to rule out any effect on mortality. Water temperature, for example, could be extremely important to detect local groundwater inputs, which has been demonstrated to have a significant effect on embryo salmonids elsewhere. The HEST also allowed accounting for the loss of fines during retrieval failure and estimating hydrological factors with the HEST illustrates its additional usefulness and reliability.</p><p>Compared to other methods, the HEST expands the possibilities to monitor and quantify fine sediment deposition in streambeds by differentiating between vertical, lateral and longitudinal infiltration pathways, and distinguishing between the depth (upper vs. lower layers) at which interstitial processes occur along the streambed column.</p>


Author(s):  
Martina Dal Bello ◽  
Jean-Charles Leclerc ◽  
Lisandro Benedetti-Cecchi ◽  
Giuseppe Andrea De Lucia ◽  
Christos Arvanitidis ◽  
...  

Examining how variability in population abundance and distribution is allotted among different spatial scales can inform of processes that are likely to generate that variability. Results of studies dealing with scale issues in marine benthic communities suggest that variability is concentrated at small spatial scales (from tens of centimetres to few metres) and that spatial patterns of variation are consistent across ecosystems characterized by contrasting physical and biotic conditions, but this has not been formally tested. Here we quantified the variability in the distribution of intertidal rocky shore communities at a range of spatial scales, from tens of centimetres to thousands of kilometres, both in the NE Atlantic and the Mediterranean, and tested whether the observed patterns differed between the two basins. We focused on canopy-forming macroalgae and associated understorey assemblages in the low intertidal, and on the distribution of Patella limpets at mid intertidal levels. Our results highlight that patterns of spatial variation, at each scale investigated, were consistent between the Atlantic and the Mediterranean, suggesting that similar ecological processes operate in these regions. In contrast with former studies, variability in canopy cover, species richness and limpet abundance was equally distributed among spatial scales, possibly reflecting the fingerprint of multiple processes. Variability in community structure of low intertidal assemblages, instead, peaked at the largest scale, suggesting that oceanographic processes and climatic gradients may be important. We conclude that formal comparisons of variability across scales nested in contrasting systems are needed, before any generalization on patterns and processes can be made.


Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 240
Author(s):  
Alessandro Ferrarini ◽  
Marco Gustin ◽  
Claudio Celada

Biodiversity loss has multiple causes, but habitat degradation through land-use change is the predominant driver. We investigated the effectiveness of the Natura 2000 network in preserving the main wetlands of the two largest islands of the Mediterranean region, whose conservation is critical for many avian species at European and global level, in a 23-year period (1990–2012). In Sardinia, the surroundings of 22 wetlands were affected by an increase in artificial areas (+64 ha/year) and decrease in agricultural (−54 ha/year) and natural (−17 ha/year) ones. In Sicily, the surroundings of 16 wetlands were impacted by an increase in agricultural areas (+50 ha/year) and decrease in natural and semi-natural ones (−62 ha/year). Results show that the Natura 2000 policies were effective in preserving wetlands (no shrinkages detected in both regions), but their surroundings experienced intense processes of degradation and artificialization in all the sub-periods considered (1990–2000, 2000–2006, 2006–2012), whose effects are now threatening waterbirds and wetland integrity. The enlargement of the existing Natura 2000 sites, the creation of new ones and the speedup of the application of the rules of the Habitats and Birds Directives seem necessary to counteract the rapid land-use changes around these important stopover sites.


2016 ◽  
Vol 67 (5) ◽  
pp. 471-494 ◽  
Author(s):  
Matúš Hyžný

AbstractDecapod associations have been significant components of marine habitats throughout the Cenozoic when the major diversification of the group occurred. In this respect, the circum-Mediterranean area is of particular interest due to its complex palaeogeographic history. During the Oligo-Miocene, it was divided in two major areas, Mediterranean and Paratethys. Decapod crustaceans from the Paratethys Sea have been reported in the literature since the 19thcentury, but only recent research advances allow evaluation of the diversity and distribution patterns of the group. Altogether 176 species-level taxa have been identified from the Oligocene and Miocene of the Western and Central Paratethys. Using the three-dimensional NMDS analysis, the composition of decapod crustacean faunas of the Paratethys shows significant differences through time. The Ottnangian and Karpatian decapod associations were similar to each other both taxonomically and in the mode of preservation, and they differed taxonomically from the Badenian ones. The Early Badenian assemblages also differed taxonomically from the Late Badenian ones. The time factor, including speciation, immigration from other provinces and/or (local or global) extinction, can explain temporal differences among assemblages within the same environment. High decapod diversity during the Badenian was correlated with the presence of reefal settings. The Badenian was the time with the highest decapod diversity, which can, however, be a consequence of undersampling of other time slices. Whereas the Ottnangian and Karpatian decapod assemblages are preserved virtually exclusively in the siliciclastic “Schlier”-type facies that originated in non-reefal offshore environments, carbonate sedimentation and the presence of reefal environments during the Badenian in the Central Paratethys promoted thriving of more diverse reef-associated assemblages. In general, Paratethyan decapods exhibited homogeneous distribution during the Oligo-Miocene among the basins in the Paratethys. Based on the co-occurrence of certain decapod species, migration between the Paratethys and the North Sea during the Early Miocene probably occurred via the Rhine Graben. At larger spatial scales, our results suggest that the circum-Mediterranean marine decapod taxa migrated in an easterly direction during the Oligocene and/or Miocene, establishing present-day decapod communities in the Indo-West Pacific.


2007 ◽  
Vol 7 (2) ◽  
pp. 69-80 ◽  
Author(s):  
D. Dudgeon

River ecosystems in monsoonal Asia are experiencing human impacts to the detriment of the rich biodiversity they support. Threats include hydrologic alteration, pollution, habitat destruction, overexploitation, and invasive exotic species. Global warming will cause further changes to river ecosystems, and may act synergistically with other threat factors. Significant upward or northward range adjustments by the freshwater biota will be necessary to cope with rising temperatures, but there will be significant constraints upon dispersal ability and availability of suitable habitat for many organisms. Global warming will exacerbate existing impacts of hydrologic alteration because of the adaptive human responses that will be engendered by changes in climate and runoff, particularly dams constructed for hydropower generation, flood protection, water storage, and irrigation. The consequences of further hydrologic alteration and habitat fragmentation will be profound, since almost all ecological processes, material transfers and life-cycle events in the rivers of monsoonal Asia are mediated or controlled by flow. Thus a change in the timing or amounts of flow changes everything. Collaborative research to determine the environmental allocation of water flow needed to maintain ecosystem integrity and sustain biodiversity in the human-dominated rivers of monsoonal Asia should be a priority for ecologists, engineers and water-resource managers.


2013 ◽  
Vol 15 (1) ◽  
pp. 189 ◽  
Author(s):  
M. VACCHI ◽  
M. MONTEFALCONE ◽  
V. PARRAVICINI ◽  
A. ROVERE ◽  
P. VASSALLO ◽  
...  

Spatial modelling is an emerging approach to the management of coastal marine habitats, as it helps understanding and predicting the results of global change. This paper reviews critically two recent examples developed in Liguria, an administrative region of NW Italy. The first example, aiming at predicting habitat status depending on pressures, provides managers with the opportunity of envisaging different scenarios for the consequences of coastal development choices. The second example defines the status of an important Mediterranean coastal marine habitat (Posidonia oceanica meadows) under natural conditions, allowing for quantifying human impacts on regressed meadows. Both modelling approaches are useful to define the targets of coastal management, and may help choosing the best management option. Well-planned and sustained monitoring is essential to model validation and improvement.


2021 ◽  
Vol 8 (9) ◽  
pp. 210035
Author(s):  
Amy A. Briggs ◽  
Anya L. Brown ◽  
Craig W. Osenberg

Microbes influence ecological processes, including the dynamics and health of macro-organisms and their interactions with other species. In coral reefs, microbes mediate negative effects of algae on corals when corals are in contact with algae. However, it is unknown whether these effects extend to larger spatial scales, such as at sites with high algal densities. We investigated how local algal contact and site-level macroalgal cover influenced coral microbial communities in a field study at two islands in French Polynesia, Mo'orea and Mangareva. At 5 sites at each island, we sampled prokaryotic microbial communities (microbiomes) associated with corals, macroalgae, turf algae and water, with coral samples taken from individuals that were isolated from or in contact with turf or macroalgae. Algal contact and macroalgal cover had antagonistic effects on coral microbiome alpha and beta diversity. Additionally, coral microbiomes shifted and became more similar to macroalgal microbiomes at sites with high macroalgal cover and with algal contact, although the microbial taxa that changed varied by island. Our results indicate that coral microbiomes can be affected by algae outside of the coral's immediate vicinity, and local- and site-level effects of algae can obscure each other's effects when both scales are not considered.


Author(s):  
John Wainwright

Hillslopes are the dominant landform features of the Earth’s surface. They make up the interface between the atmosphere and Earth systems, providing a substrate that supports life and thus the basis for human activities within the Mediterranean. Their location at this interface means that hillslopes evolve through a complex interaction of different processes, operating at a range of different time and spatial scales. At longer timescales, processes of weathering convert rock and other parent materials into soils. Soils allow the growth of vegetation and thus further feedbacks between atmospheric and surface processes; in some cases these feedbacks can be seen to provide relative stability, while in others the system can become more fragile (Chapter 20). The latter case often arises as a result of erosion processes of various types. Water erosion and mass movements are a significant element of Mediterranean landscape evolution, occurring in parallel with (in response to, and affecting) tectonic processes that have moulded the configuration of the Earth’s crust (see Chapter 1), producing the unique combination of environmental characteristics of the region. Since the Late Pleistocene, depending on location, human activity has led to an acceleration of many of these processes, with important consequences for the basic ‘life-support system’ of the region and for global environmental cycles. The in situ modification of near-surface materials is typically considered to take place along a continuum relating to the dominance of mechanical or chemical processes (e.g. Birkeland 1999). The simplest control may be considered to be climatic, with mechanical breakdown of particles dominating in cold, dry conditions, and chemical processes dominating in warm, wet conditions. Comparing this model to the present day climate of the Mediterranean suggests, as with other processes, something of a north–south divide in terms of the dominant weathering process. The northern part of the basin (together with the Levant and the north-facing uplands of the Maghreb) would seem to be dominated by moderate chemical weathering; exceptions being the arid areas of south-east Spain, southern Sicily, eastern Cyprus, and parts of the Anatolian plateau as well as areas where low average temperatures would also reduce rates, such as in the Alps and parts of Slovenia and Croatia.


Sign in / Sign up

Export Citation Format

Share Document