scholarly journals 7Be/210Pbxs Ratio-Derived Age and Residence Time of Suspended Sediments in Galveston Bay

2021 ◽  
Vol 8 ◽  
Author(s):  
Nicole Schmidt ◽  
Timothy Dellapenna ◽  
Peng Lin

The winds associated with the passage of meteorological fronts cause waves that induce sediment remobilization/resuspension, especially within shallow estuaries such as Galveston Bay. The passage of cold fronts, collectively, on an annual to decadal basis, generate more sediment resuspension than most hurricanes and tropical storms. With a warming climate, the intensity of all meteorological events is shifting toward having greater impacts on these biologically productive environments. To better understand sediment resuspension within the bay, water samples were collected during frontal passages at two locations in Galveston Bay, including one location in the middle portion of the bay and another closer to the mouth of the bay. By collecting precipitation, water samples in both the middle and lower bay, and measuring the ratio of 7Be/210Pbxs in these samples; we quantified the residence times of total suspended sediment (TSS) in middle and lower Galveston Bay. Our results showed that suspended sediment age increased and percent of new suspended sediment decreased along the axis from the middle bay to the lower bay. This results from the initial introduction of newly labeled isotopes and suspended load coming from fluvial discharges which enter at the top of the bay and travel through the bay. The age of suspended sediment from the first sampling event was 70 ± 10 days, whereas the age in the second event was 16 ± 3 days greater. In the last sampling event, the age of suspended sediment event was 35 ± 7.4 days younger than the second, suggesting that the majority of suspended sediments was likely transported entirely out of the bay by the second cold front, prior to the final sampling event. This indicates that there are longer suspended sediment residence times when the water is trapped within the bay. Our estimated residence time of suspended sediments (51–105 days) suggest the particle-bound contaminants adsorb to suspended sediment may spend months suspended in the bay before exiting the bay or being accreted into the bay sediment column, increasing the exposure time of living organisms to various particle-bound contaminants.

1986 ◽  
Vol 21 (3) ◽  
pp. 344-350 ◽  
Author(s):  
Barry G. Oliver ◽  
Klaus L.E. Kaiser

Abstract The concent rat ions of hexachloroethane (HCE), hexachlorobutadiene (HCBD), pentachlorobenzene (QCB), hexachlorobenzene (HCB) and octachlorostyrene (OCS) in large volume water samples show that the major sources of these chemicals to the St. Clair River are Dow Chemical Company effluents and, to a lesser degree, Sarnia’s Township ditch which drains one of Dow’s waste disposal sites. Tributaries entering the river on both sides of the Canada/United States border contain measurable concentrations of these chemicals indicating low level contamination throughout the area. The degree of water/suspended sediment partitioning of the chemicals (Kp) was studied. Kp values for the individual chemicals changed in a manner consistent with changes in their physical-chemical properties.


1986 ◽  
Vol 21 (3) ◽  
pp. 332-343 ◽  
Author(s):  
C.H. Chan ◽  
Y.L. Lau ◽  
B.G. Oliver

Abstract The concentration distribution of hexachlorobutadiene (HCBD), pentachloro-benzene (QCB), hexachlorobenzene (HCB) and octachlorostyrene (OCS) in water samples from transects across the upper and lower St. Clair River and the upper Detroit River were determined on four occasions in 1985. The data show a plume of these contaminants from the Sarnia industrial area. The fluxes and concentration profiles of the contaminants at Port Lambton have been modelled success fully using a simple transverse mixing model. A study on the chemical partitioning between the “dissolved” and “suspended sediment” phases shows that an important contaminant fraction is carried in the river by the suspended solids, particularly for lipophilie compounds such as HCB and OCS,


Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1432
Author(s):  
Edyta Kudlek

Every compound that potentially can be harmful to the environment is called a Contaminant of Emerging Concern (CEC). Compounds classified as CECs may undergo different transformations, especially in the water environment. The intermediates formed in this way are considered to be toxic against living organisms even in trace concentrations. We attempted to identify the intermediates formed during single chlorination and UV-catalyzed processes supported by the action of chlorine and hydrogen peroxide or ozone of selected contaminants of emerging concern. The analysis of post-processing water samples containing benzocaine indicated the formation of seven compound intermediates, while ibuprofen, acridine and β-estradiol samples contained 5, 5, and 3 compound decomposition by-products, respectively. The number and also the concentration of the intermediates decreased with the time of UV irradiation. The toxicity assessment indicated that the UV-catalyzed processes lead to decreased toxicity nature of post-processed water solutions.


DYNA ◽  
2019 ◽  
Vol 86 (211) ◽  
pp. 241-248
Author(s):  
Francisco Fernando Garcia Renteria ◽  
Mariela Patricia Gonzalez Chirino

In order to study the effects of dredging on the residence time of the water in Buenaventura Bay, a 2D finite elements hydrodynamic model was coupled with a particle tracking model. After calibrating and validating the hydrodynamic model, two scenarios that represented the bathymetric changes generated by the dredging process were simulated. The results of the comparison of the simulated scenarios, showed an important reduction in the velocities fields that allow an increase of the residence time up to 12 days in some areas of the bay. In the scenario without dredging, that is, with original bathymetry, residence times of up to 89 days were found.


Author(s):  
Maureen A. Downing-Kunz ◽  
Paul A. Work ◽  
David H. Schoellhamer

AbstractSuspended-sediment flux at the ocean boundary of the San Francisco Estuary—the Golden Gate—was measured over a tidal cycle following peak watershed runoff from storms to the estuary in two successive years to investigate sediment transport through the estuary. Observations were repeated during low-runoff conditions, for a total of three field campaigns. Boat-based measurements of velocity and acoustic backscatter were used to calculate water and suspended-sediment flux at a location 1 km landward of the Golden Gate. Suspended-sediment concentration (SSC) and salinity data from up-estuary sensors were used to track watershed-sourced sediment plumes through the estuary. Estimates of suspended-sediment load from the watershed and net suspended-sediment flux for one up-estuary subembayment were used to infer in-estuary trapping of sediment. For both post-storm field campaigns, observations at the ocean boundary were conducted on the receding limb of the watershed hydrograph. At the ocean boundary, peak instantaneous suspended-sediment flux was tidally asymmetric and was greater on flood tides than on ebb tides for all three field campaigns, due to higher average SSC in the cross-section on flood tides. Shear-induced sediment resuspension was greater on flood tides and suggests the presence of an erodible pool outside the estuary. The storms in 2016 led to less export of discharge and sediment from the watershed and greater sediment trapping within one up-estuary subembayment compared to that observed in 2017. Results suggest that substantial trapping of watershed sediments occurred during both storm events, likely due to the formation of estuarine turbidity maxima (ETM) at different locations in the estuary. ETM locations were forced nearer the ocean boundary in 2017. Additional measurements and modeling are required to quantify the long-term sediment flux at the Golden Gate.


2021 ◽  
Author(s):  
Iva Kůrková ◽  
Jiří Bruthans

<p>Localities containing karst features were studied in the northwestern part of Bohemian Cretaceous Basin. Namely Turnov area in facies transition between coarse-delta sandstones and marlstones (Jizera Formation, Turonian) and Miskovice area in limestones and sandy limestones - sandstones (Peruc-Korycany Formation, Cenomanian). Evolution of karst conduits is discussed elsewhere (Kůrková et al. 2019).</p><p>In both localities, disappearing streams, caves and karst springs with maximum discharge up to 100 L/s were documented. Geology and hydrogeology of this area was studied from many points of view to describe formation of karst conduits and characterize groundwater flow. Tracer tests were performed using NaCl and Na-fluoresceine between sinkholes and springs under various flow rates to evaluate residence times of water in conduits and to describe geometry of conduits. Breatkthrough curves of tracer tests were evaluated by means of Qtracer2 program (Field 2002). Groundwater flow velocity in channels starts at 0.6 km/day during low water levels up to 15 km/day during maximum water levels, the velocity increases logarithmically as a function of discharge. Similar karst conduits probably occur in other parts of Bohemian Cretaceous Basin where lot of large springs can be found.</p><p>Mean residence time of difussed flow based on tritium, CFC and SF<sub>6</sub> sampled at karst springs is 20 years for 75% of water and 100 years for remaining 25%, based on binary mixing dispersion model. This shows that most of the water drained by karst conduits is infiltrated through the soil and fractured environment with relatively high residence time. Residence times in different types of wells and springs were also measured in whole north-western part of Bohemian Cretaceous Basin. Results indicate long residence times in semi-stagnant zones represented by monitoring wells and short residence times in preferential zones represented by springs and water-supply wells.</p><p> </p><p>Research was funded by the Czech Science Foundation (GA CR No. 19-14082S), Czech Geological Survey – internal project 310250</p><p> </p><p>Field M. (2002): The QTRACER2 program for Tracer Breakthrough Curve Analysis for Tracer Tests in Karstic Aquifers and Other hydrologic Systems. – U.S. Environmental protection agency hypertext multimedia publication in the Internet at http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=54930.</p><p>Kůrková I., Bruthans J., Balák F., Slavík M., Schweigstillová J., Bruthansová J., Mikuš P., Grundloch J. (2019): Factors controlling evolution of karst conduits in sandy limestone and calcareous sandstone (Turnov area, Czech Republic). Journal of Hydrology: 574: 1062-1073</p>


2020 ◽  
Vol 13 (3) ◽  
pp. 1248 ◽  
Author(s):  
Solange Cavalcanti de Melo ◽  
José Coelho de Araújo Filho ◽  
Renata Maria Caminha Mendes de Oliveira Carvalho

RESUMOO conhecimento da análise quantitativa das concentrações de sedimentos em suspensão transportados pelo rio São Francisco bem como sua relação com as vazões é de muita importância, pois pode auxiliar na identificação dos efeitos da intervenção humana e ou ocasionados pelas condições naturais da região. As regiões a jusante dos barramentos no rio São Francisco apresentam como principal consequência a regularização das vazões e a diminuição das concentrações de sedimentos. O objetivo da pesquisa foi determinar as curvas-chave de sedimentos em suspensão (CCS) nas estações fluviométricas instaladas no Baixo São Francisco (BSF) após a barragem de Xingó. Para o estabelecimento dessas curvas foram utilizados dados de vazão e concentração de sedimentos em suspensão, obtidos do sistema Hidroweb no site da Agência Nacional da Água (ANA) no período de 1999 a 2018. Foram obtidas CCS para todo o trecho do BSF as quais apresentaram bons coeficientes de determinação. Na análise dos dados também foi possível perceber que nos últimos anos, desde 2013 houve redução gradativa das vazões disponibilizadas na barragem de Xingó. Consequentemente, houve também a redução gradativa das cargas de sedimentos em suspensão geradas nas estações de Piranhas, Traipu e Propriá, ou seja, os menores valores já registrados no BSF correspondendo as menores séries históricas tanto de vazão como de sedimentos em suspensão.  Keys curves of sediment discharges in suspension in the Lower São Francisco A B S T R A C TThe knowledge of the quantitative analysis of suspended sediment concentrations carried by the São Francisco River as well as its relation with the flows is of great importance, since it can help in the identification of the effects of human intervention and/or caused by the natural conditions of the region. In the downstream regions of the São Francisco riverbanks, the main consequence was the regularization of flow rates and the reduction of sediment concentrations. The objective of the research was to determine the key curves of suspended sediments (CCS) at the fluviometric stations installed in the lower São Francisco river after Xingó dam. For the evaluation, flow data and suspended sediment concentration were used. These data were obtained from the Hidroweb system on the website of the National Water Agency (ANA) from 1999 to 2018. CCS were plotted for all stretches and presented good coefficients of determination (R2). Based on the analysis of the data it was also possible to notice that in recent years, since 2013 there has been a gradual reduction of the flows available in the Xingó dam. Consequently, there was also a gradual reduction of suspended sediment loads generated at the Piranhas, Traipu and Propriá stations, that is, the lowest values already recorded in lower São Francisco, corresponding to the lower historical series of both discharge and suspended sediments.Keywords: dam, flow, sediments 


Geografie ◽  
1997 ◽  
Vol 102 (2) ◽  
pp. 130-138
Author(s):  
Zdeněk Kliment ◽  
Jan Kopp

The article examines suspended sediment transport in Mže, Radbuza, and Úhlava Rivers over the period 1989-95. Data on suspended sediments was collected at five observing sites. The research has been carried out in collaboration with Czech Hydrometeorological Institute, Plzeň. Apart from the suspended load characteristics also the seasonal variation of suspended sediments, siltation of Hracholusky and České Údolí Lakes, and the share of inorganic material in suspended sediments have been examined.


2019 ◽  
Vol 18 ◽  
pp. 155
Author(s):  
G. Eleftheriou ◽  
C. Tsabaris ◽  
D. L. Patiris ◽  
E. Androulakaki ◽  
M. Kokkoris ◽  
...  

The evaluation of time period that meteoric water remains in the ground (residence time) before exiting in the open sea can be a valuable information for the submarine groundwater discharges (SGD) in the costal zones. Coastal waters contain elevated dissolved activities of radium isotopes compared to the open ocean, where excess activities are zero. Lately it has been shown by Moore et al., that residence time can be estimated by a model based on radium radioisotopes ratio reduction throughout the coast. However the standard methods for the estimation of radium isotopes concentration in the water are sophisticated, time consuming or require big amount of sample. Hereby, a method based on the direct gamma ray spectrometry of untreated water samples from coastal areas is applied to determine the residence time of the SGD. Efficiency calibration of the spectrometry set up has been performed for two different volumetric sample geometries, using 152Eu/154Eu solution as reference source. In order to ensure the reliability of the method, the background courting rate magnitude and variance through time have been defined for the radioisotopes of interest. Additionally, the minimum detectible activity (MDA) of the measuring system was determined, in Becquerel per cubic meter, as a function of energy in water samples. The developed method was applied and validated for water samples from the submarine spring in Stoupa Bay, southwestern Peloponnesus. The defined residence time varies from 3 to 6 days, being in good agreement with the results of the standard geological pigment-tracer method.


2021 ◽  
Author(s):  
Dhruv Sehgal ◽  
Núria Martínez-Carreras ◽  
Christophe Hissler ◽  
Victor Bense ◽  
AJF (Ton) Hoitink

<p>Manual and unattended sampling in the field and laboratory analysis are common practices to measure suspended sediment (SS) carbon content and particle size. However, one of the major drawbacks of these ex-situ methods is that they make high frequency measurements challenging. This includes restricted data collection due to limited access to the sampling locations during turbulent conditions or high flows, when the largest amount of sediments is transported downstream, introducing uncertainty in quantification of SS properties (particle size and carbon content) and sediment loads. Knowledge on SS carbon content and particle size is also important to better understand the multi-component form of suspended sediments (i.e. flocs) that directly affect sediment transport and other sediment properties (e.g. settling velocity and density). Moreover, SS carbon content and particle size exert an impact on the optical sensor readings that are traditionally used to measure turbidity. In that respect, high frequency measurements of SS carbon content and particle size could eventually help us to move from ‘local’ calibrations towards ‘global’ dependencies based on in-situ SS characterization.</p><p>In this study, we propose to use a submerged UV-VIS spectrometer to infer SS carbon content and particle size. The sensor measures the entire light absorption spectrum of water between 200 nm and 750 nm at sampling intervals as short as 2-minutes. To this end, we first test our approach under controlled conditions with an experimental laboratory setup consisting of a cylindrical tank (40-L) with an open top. An UV-VIS spectrometer and a LISST-200X sensor (to measure particle size distribution) are installed horizontally. A stirrer facilitates the homogeneous mixing of SS and prevents the settling of heavy particles at the bottom. We use the sediments sampled from 6 sites in Luxembourg with contrasting composition and representing different land use types and geological settings. The sampled sediments were wet sieved into 3 size classes to clearly recognize the effect of particle size on absorption. In our investigation, we use specific wavelengths, chemometric techniques and carbon content specific absorbance indices to infer SS composition and particle size from the absorption spectrum. Results are then validated using in-situ field data from two instrumented field sites in Luxembourg. Amid the challenge of associating laboratory and field results, the preliminary results indicate that the absorption spectrum measured with a submerged UV-VIS spectrometer can be used to estimate SS particle size and carbon content.</p>


Sign in / Sign up

Export Citation Format

Share Document