scholarly journals Trait Response to Nitrogen and Salinity in Rhizophora mangle Propagules and Variation by Maternal Family and Population of Origin

2021 ◽  
Vol 8 ◽  
Author(s):  
Christina L. Richards ◽  
Kristen L. Langanke ◽  
Jeannie Mounger ◽  
Gordon A. Fox ◽  
David B. Lewis

Many coastal foundation plant species thrive across a range of environmental conditions, often displaying dramatic phenotypic variation in response to environmental variation. We characterized the response of propagules from six populations of the foundation species Rhizophora mangle L. to full factorial combinations of two levels of salinity (15 ppt and 45 ppt) reflecting the range of salinity measured in the field populations, and two levels of nitrogen (N; no addition and amended at approximately 3 mg N per pot each week) equivalent to comparing ambient N to a rate of addition of 75 kg per hectare per year. The response to increasing salinity included significant changes, i.e., phenotypic plasticity, in succulence and root to shoot biomass allocation. Propagules also showed plasticity in maximum photosynthetic rate and root to shoot allocation in response to N amendment, but the responses depended on the level of salinity and varied by population of origin. In addition, propagules from different populations and maternal families within populations differed in survival and all traits measured except photosynthesis. Variation in phenotypes, phenotypic plasticity and propagule survival within and among R. mangle populations may contribute to adaptation to a complex mosaic of environmental conditions and response to climate change.

2021 ◽  
Author(s):  
Christina Richards ◽  
Kristen L Langanke ◽  
Jeannie Mounger ◽  
Gordon A Fox ◽  
David B Lewis

Many coastal foundation plant species thrive across a range of environmental conditions, often displaying dramatic phenotypic variation in response to environmental variation. We characterized the response of propagules from six populations of the foundation species Rhizophora mangle L. to full factorial combinations of two levels of salt (15 ppt and 45 ppt) reflecting the range of salinity measured in the field populations, and two levels of nitrogen (N; no addition and amended at approximately 3 mg N per pot each week) equivalent to comparing ambient N to a rate of addition of 75 kg per hectare per year. The response to increasing salt included significant plasticity in succulence. Propagules also showed plasticity in maximum photosynthetic rate in response to N amendment, but the responses depended on the level of salt and varied by population of origin. Generally, survival was lower in high salt and high N, but the impact varied among populations. Overall, this study revealed significant phenotypic plasticity in response to salt and N level. Propagules from different populations differed in all traits measured. Variation in phenotypic plasticity and propagule survival in R. mangle may contribute to adaptation to a complex mosaic of environmental conditions and response to climate change.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 892
Author(s):  
Valda Gudynaitė-Franckevičienė ◽  
Alfas Pliūra

To have a cleaner environment, good well-being, and improve the health of citizens it is necessary to expand green urban and suburban areas using productive and adapted material of tree species. The quality of urban greenery, resistance to negative climate change factors and pollution, as well as efficiency of short-rotation forestry in suburban areas, depends primarily on the selection of hybrids and clones, suitable for the local environmental conditions. We postulate that ecogenetic response, phenotypic plasticity, and genotypic variation of hybrid poplars (Populus L.) grown in plantations are affected not only by the peculiarities of hybrids and clones, but also by environmental conditions of their vegetative propagation. The aim of the present study was to estimate growth and biochemical responses, the phenotypic plasticity, genotypic variation of adaptive traits, and genetically regulated adaptability of Populus hybrids in field trials which may be predisposed by the simulated contrasting temperature conditions at their vegetative propagation phase. The research was performed with the 20 cultivars and experimental clones of one intraspecific cross and four different interspecific hybrids of poplars propagated under six contrasting temperature regimes in phytotron. The results suggest that certain environmental conditions during vegetative propagation not only have a short-term effect on tree viability and growth, but also can help to adapt to climate change conditions and grow successfully in the long-term. It was found that tree growth and biochemical traits (the chlorophyll A and B, pigments content and the chlorophyll A/B ratio) of hybrid poplar clones grown in field trials, as well as their traits’ genetic parameters, were affected by the rooting-growing conditions during vegetative propagation phase. Hybrids P. balsamifera × P. trichocarpa, and P. trichocarpa × P. trichocarpa have shown the most substantial changes of biochemical traits across vegetative propagation treatments in field trial. Rooting-growing conditions during vegetative propagation had also an impact on coefficients of genotypic variation and heritability in hybrid poplar clones when grown in field trials.


2021 ◽  
Vol 28 (1) ◽  
pp. 277-287
Author(s):  
M Khairul Alam

The history of biosystematics research and its impacts on climate goes before political ramifications. Climate change is altering the environments and likely to result in changes in the distribution of species, flowering times; migrate and adapt to the new environmental conditions; or extinction. Adaptive capacity is the ability of the plants to adapt to the impacts of climate change. Adaptation process is going in nature through phenotypic plasticity, natural selection or migration or polyploidization. The options are not mutually exclusive. Phenotypic plasticity may be the most efficient way of adaptation to a new environment. Polyploidization may increase tolerance to diverse ecological conditions and the high incidence of polyploidy in plants indicates its adaptive significance. Population having polyploid pillar complex is a good backup support towards microevolution and speciation, a mode of adaptation. The paper discusses about these biosystematics approaches towards adaptation to new environmental conditions resulting from climate change. It also discusses about the role of taxonomists under the changed circumstances. It is evident from the review that a set of biosystematics data along with other ecological and conservation information needs to be included in Flora and Monographs. It reveals that it was as far as worked out at the Paris Botanical Congress 1954 and put up by Stebbins in a series of proposals, termed as “Stebbins’ Ten Points” that needs further enrichment. Bangladesh J. Plant Taxon. 28(1): 277-287, 2021 (June)


2021 ◽  
Author(s):  
Stephen P. De Lisle ◽  
Maarit I. Mäenpää ◽  
Erik I. Svensson

AbstractPhenology is a key determinant of fitness, particularly in organisms with complex life cycles with dramatic transitions from an aquatic to a terrestrial life stage. Because optimum phenology is influenced by local environmental conditions, particularly temperature, phenotypic plasticity could play an important role in adaptation to seasonally variable environments. Here, we used a 18-generation longitudinal field dataset from a wild insect (the damselfly Ischnura elegans) and show that phenology has strongly advanced, coinciding with increasing temperatures in northern Europe. Using individual fitness data, we show this advancement is most likely an adaptive response towards a thermally-dependent moving fitness optimum. These field data were complemented with a laboratory experiment, revealing that developmental plasticity to temperature quantitatively matches the environmental dependence of selection and can explain the observed phenological advance. We expand the analysis to the macroevolutionary level, using a public database of over 1 million occurrence records on the phenology of Swedish damselfly and dragonfly species. Combining spatiotemporally matched temperature data and phylogenetic information, we estimated the phenological reaction norms towards temperature for 49 Swedish species. We show that thermal plasticity in phenology is more closely aligned with local adaptation for odonate species that have recently colonized northern latitudes, whereas there is more mismatch at lower latitudes. Our results show that phenological plasticity plays a key role in microevolutionary adaptation within in a single species, and also suggest that such plasticity may have facilitated post-Pleistocene range expansion at the macroevolutionary scale in this insect clade.Impact StatementOrganisms with complex life cycles must time their life-history transitions to match environmental conditions favorable to survival and reproduction. The timing of these transitions – phenology – is therefore of critical importance, and phenology a key trait in adaptive responses to climate change. Here, we use field data from a single species and phylogenetic comparative from over 1 million individual damselfly and dragonfly records to show that plasticity in phenology underlies adaptation at both the microevolutionary scale (across generations in a single species) and the macroevolutionary scale (across deep time in a clade). Our results indicates that phenotypic plasticity has the potential to explain variation in phenology and adaptive response to climate change across disparate evolutionary time scales.


Author(s):  
Juha Merilä ◽  
Ary A. Hoffmann

Changing climatic conditions have both direct and indirect influences on abiotic and biotic processes and represent a potent source of novel selection pressures for adaptive evolution. In addition, climate change can impact evolution by altering patterns of hybridization, changing population size, and altering patterns of gene flow in landscapes. Given that scientific evidence for rapid evolutionary adaptation to spatial variation in abiotic and biotic environmental conditions—analogous to that seen in changes brought by climate change—is ubiquitous, ongoing climate change is expected to have large and widespread evolutionary impacts on wild populations. However, phenotypic plasticity, migration, and various kinds of genetic and ecological constraints can preclude organisms from evolving much in response to climate change, and generalizations about the rate and magnitude of expected responses are difficult to make for a number of reasons. First, the study of microevolutionary responses to climate change is a young field of investigation. While interest in evolutionary impacts of climate change goes back to early macroevolutionary (paleontological) studies focused on prehistoric climate changes, microevolutionary studies started only in the late 1980s. The discipline gained real momentum in the 2000s after the concept of climate change became of interest to the general public and funding organizations. As such, no general conclusions have yet emerged. Second, the complexity of biotic changes triggered by novel climatic conditions renders predictions about patterns and strength of natural selection difficult. Third, predictions are complicated also because the expression of genetic variability in traits of ecological importance varies with environmental conditions, affecting expected responses to climate-mediated selection. There are now several examples where organisms have evolved in response to selection pressures associated with climate change, including changes in the timing of life history events and in the ability to tolerate abiotic and biotic stresses arising from climate change. However, there are also many examples where expected selection responses have not been detected. This may be partly explainable by methodological difficulties involved with detecting genetic changes, but also by various processes constraining evolution. There are concerns that the rates of environmental changes are too fast to allow many, especially large and long-lived, organisms to maintain adaptedness. Theoretical studies suggest that maximal sustainable rates of evolutionary change are on the order of 0.1 haldanes (i.e., phenotypic standard deviations per generation) or less, whereas the rates expected under current climate change projections will often require faster adaptation. Hence, widespread maladaptation and extinctions are expected. These concerns are compounded by the expectation that the amount of genetic variation harbored by populations and available for selection will be reduced by habitat destruction and fragmentation caused by human activities, although in some cases this may be countered by hybridization. Rates of adaptation will also depend on patterns of gene flow and the steepness of climatic gradients. Theoretical studies also suggest that phenotypic plasticity (i.e., nongenetic phenotypic changes) can affect evolutionary genetic changes, but relevant empirical evidence is still scarce. While all of these factors point to a high level of uncertainty around evolutionary changes, it is nevertheless important to consider evolutionary resilience in enhancing the ability of organisms to adapt to climate change.


2014 ◽  
Vol 112 (1) ◽  
pp. 184-189 ◽  
Author(s):  
Carlos A. Botero ◽  
Franz J. Weissing ◽  
Jonathan Wright ◽  
Dustin R. Rubenstein

In an era of rapid climate change, there is a pressing need to understand how organisms will cope with faster and less predictable variation in environmental conditions. Here we develop a unifying model that predicts evolutionary responses to environmentally driven fluctuating selection and use this theoretical framework to explore the potential consequences of altered environmental cycles. We first show that the parameter space determined by different combinations of predictability and timescale of environmental variation is partitioned into distinct regions where a single mode of response (reversible phenotypic plasticity, irreversible phenotypic plasticity, bet-hedging, or adaptive tracking) has a clear selective advantage over all others. We then demonstrate that, although significant environmental changes within these regions can be accommodated by evolution, most changes that involve transitions between regions result in rapid population collapse and often extinction. Thus, the boundaries between response mode regions in our model correspond to evolutionary tipping points, where even minor changes in environmental parameters can have dramatic and disproportionate consequences on population viability. Finally, we discuss how different life histories and genetic architectures may influence the location of tipping points in parameter space and the likelihood of extinction during such transitions. These insights can help identify and address some of the cryptic threats to natural populations that are likely to result from any natural or human-induced change in environmental conditions. They also demonstrate the potential value of evolutionary thinking in the study of global climate change.


2020 ◽  
Vol 637 ◽  
pp. 159-180
Author(s):  
ND Gallo ◽  
M Beckwith ◽  
CL Wei ◽  
LA Levin ◽  
L Kuhnz ◽  
...  

Natural gradient systems can be used to examine the vulnerability of deep-sea communities to climate change. The Gulf of California presents an ideal system for examining relationships between faunal patterns and environmental conditions of deep-sea communities because deep-sea conditions change from warm and oxygen-rich in the north to cold and severely hypoxic in the south. The Monterey Bay Aquarium Research Institute (MBARI) remotely operated vehicle (ROV) ‘Doc Ricketts’ was used to conduct seafloor video transects at depths of ~200-1400 m in the northern, central, and southern Gulf. The community composition, density, and diversity of demersal fish assemblages were compared to environmental conditions. We tested the hypothesis that climate-relevant variables (temperature, oxygen, and primary production) have more explanatory power than static variables (latitude, depth, and benthic substrate) in explaining variation in fish community structure. Temperature best explained variance in density, while oxygen best explained variance in diversity and community composition. Both density and diversity declined with decreasing oxygen, but diversity declined at a higher oxygen threshold (~7 µmol kg-1). Remarkably, high-density fish communities were observed living under suboxic conditions (<5 µmol kg-1). Using an Earth systems global climate model forced under an RCP8.5 scenario, we found that by 2081-2100, the entire Gulf of California seafloor is expected to experience a mean temperature increase of 1.08 ± 1.07°C and modest deoxygenation. The projected changes in temperature and oxygen are expected to be accompanied by reduced diversity and related changes in deep-sea demersal fish communities.


1986 ◽  
Vol 113 (4_Suppl) ◽  
pp. S93-S97 ◽  
Author(s):  
A. FERRANDEZ ◽  
E. MAYAYO ◽  
M. RODRIGUEZ ◽  
J.M. ARNAL ◽  
J. CARO ◽  
...  

Abstract The differences existing among some european longitudinal growth studies make it necessary to be cautious in the use of standards constructed on different populations. The improvement of the environmental conditions during the last 20 years is probably the most important cause of the "catch-up" phenomenon of the spanish stature. It is probable that racial characteristics also play a role, even in the same country as can be appreciated on comparing two spanish longitudinal studies based on children originary from different regions. All of wich indicates the need to use own standards in those countries wich, like ours, have lived through a period of intenses changes. Even exploratory studies of regional differences in the same country seem necesary.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Daniel E Winkler ◽  
Michelle Yu-Chan Lin ◽  
José Delgadillo ◽  
Kenneth J Chapin ◽  
Travis E Huxman

We studied how a rare, endemic alpine cushion plant responds to the interactive effects of warming and drought. Overall, we found that both drought and warming negatively influenced the species growth but that existing levels of phenotypic variation may be enough to at least temporarily buffer populations.


2021 ◽  
Vol 22 (3) ◽  
pp. 1357
Author(s):  
Ewelina A. Klupczyńska ◽  
Tomasz A. Pawłowski

Environmental conditions are the basis of plant reproduction and are the critical factors controlling seed dormancy and germination. Global climate change is currently affecting environmental conditions and changing the reproduction of plants from seeds. Disturbances in germination will cause disturbances in the diversity of plant communities. Models developed for climate change scenarios show that some species will face a significant decrease in suitable habitat area. Dormancy is an adaptive mechanism that affects the probability of survival of a species. The ability of seeds of many plant species to survive until dormancy recedes and meet the requirements for germination is an adaptive strategy that can act as a buffer against the negative effects of environmental heterogeneity. The influence of temperature and humidity on seed dormancy status underlines the need to understand how changing environmental conditions will affect seed germination patterns. Knowledge of these processes is important for understanding plant evolution and adaptation to changes in the habitat. The network of genes controlling seed dormancy under the influence of environmental conditions is not fully characterized. Integrating research techniques from different disciplines of biology could aid understanding of the mechanisms of the processes controlling seed germination. Transcriptomics, proteomics, epigenetics, and other fields provide researchers with new opportunities to understand the many processes of plant life. This paper focuses on presenting the adaptation mechanism of seed dormancy and germination to the various environments, with emphasis on their prospective roles in adaptation to the changing climate.


Sign in / Sign up

Export Citation Format

Share Document