scholarly journals The Corrosion Resistance of Graphene-Modified Oily Epoxy Coating on AZ31 Magnesium Alloys

2021 ◽  
Vol 8 ◽  
Author(s):  
Zhengyuan Gao ◽  
Chengjin Sun ◽  
Lianteng Du ◽  
Dong Yang ◽  
Xiang Zhang ◽  
...  

In order to enhance the corrosion resistance of AZ31 magnesium alloy, graphene-modified oily epoxy resin coating (G/OEP) were prepared on the surface of magnesium alloy. SEM observations show that graphene has fewer surface defects, and can significantly improve the surface quality of the coating and reduce defects. FI-TR testing shows that coating are mainly composed of epoxy resin (polyurethane) and its corresponding curing agent. Electrochemical testing shows that the coating can provide good corrosion protection for magnesium alloy. Compared with the corrosion current density of magnesium alloy of 6.20 × 10−7 A/cm2, the G/OEP can significantly reduce the corrosion current density to 6.96 × 10−12 A/cm2. Analysis of the morphology of the coating after electrochemical corrosion found that graphene can improve the shielding ability of the coating to corrosive media, and reduce the damage of corrosion to the coating structure, and enhance the corrosion resistance of the coating. The content of graphene for excellent corrosion resistance of coating during this experiment is 0.6 wt%. The graphene can fill the defects generally in the coating during the curing process to prevent substrate from penetration of corrosive media caused by the density and hydrophobicity of coating are increased.

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4904
Author(s):  
Hyunbin Jo ◽  
Soomin Lee ◽  
Donghyun Kim ◽  
Junghoon Lee

Sealing as a post treatment of anodized aluminum is required to enhance the corrosion resistance by filling nanopores, which allow the penetration of corrosive media toward the base aluminum. We designed a mixed sealing solution with nickel acetate and ammonium fluoride by modifying traditional nickel fluoride cold sealing. The concentration of mixed sealing solution affected the reaction rate of sealing and corrosion current density of anodized aluminum alloy. The higher concentration of mixed sealing solution improved the sealing rate, which was represented by a decrease of corrosion current density of anodized aluminum alloy. However, a mixed sealing solution with 2/3 concentration of general nickel fluoride sealing solution operated at room temperature showed the lowest corrosion current density compared to traditional methods (e.g., nickel fluoride cold sealing (NFCS) and nickel acetate hot sealing) and other mixed sealing solutions. Moreover, the mixed sealing solution with 2/3 concentration of general NFCS had a lower risk for over sealing, which increases the corrosion current density by excessive dissolution of anodic oxide. Therefore, the mixed sealing solution with optimized conditions designed in this work possibly provides a new method for enhancing the corrosion resistance of anodized aluminum alloys.


2011 ◽  
Vol 189-193 ◽  
pp. 571-574
Author(s):  
Peng Li

HIPIB irradiation experiment is carried out at a specific ion current density of 1.1 J/cm2 with shot number from one to ten in order to explore the effect of shot number on electrochemical corrosion behavior of magnesium alloy. Surface morphologies, microstructure and corrosion resistance of the irradiated samples are examined by scanning electron microscopy (SEM), transmission electron microscope (TEM) and potentiodynamic polarization technique, respectively. It is found that HIPIB irradiation leads to the increase in open circuit potential, corrosion potential and breakdown potential, and the decrease in the corrosion current density and the corrosion rate as compared to the original sample. The improved corrosion resistance is mainly attributed to the grain refinement and surface purification induced by HIPIB irradiation.


2014 ◽  
Vol 633-634 ◽  
pp. 879-882 ◽  
Author(s):  
Jing Dong Qiu ◽  
Su Qiu Jia

Based on the traditional direct electroless nickel methods, chemical baths are improved by removing HF. Examinations have been carried out on the Ni-P deposited on the interlayer for morphology, composition and corrosion-resistance by SEM, EDS, XRD and other instruments. A Ni-P film with fine and dense structure was obtained on the AM60B magnesium alloy. It exhibits lower corrosion current density and more positive corrosion potential than the substrate.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1194
Author(s):  
Philipp Kiryukhantsev-Korneev ◽  
Alina Sytchenko ◽  
Yuriy Kaplanskii ◽  
Alexander Sheveyko ◽  
Stepan Vorotilo ◽  
...  

The coatings ZrB2 and Zr-B-N were deposited by magnetron sputtering of ZrB2 target in Ar and Ar–15%N2 atmospheres. The structure and properties of the coatings were investigated via scanning and transmission electron microscopy, energy dispersion analysis, optical profilometry, glowing discharge optical emission spectroscopy and X-ray diffraction analysis. Mechanical and tribological properties of the coatings were investigated using nanoindentation, “pin-on-disc” tribological testing and “ball-on-plate” impact testing. Free corrosion potential and corrosion current density were measured by electrochemical testing in 1N H2SO4 and 3.5%NaCl solutions. The oxidation resistance of the coatings was investigated in the 600–800 °С temperature interval. The coatings deposited in Ar contained 4–11 nm grains of the h-ZrB2 phase along with free boron. Nitrogen-containing coatings consisted of finer crystals (1–4 nm) of h-ZrB2, separated by interlayers of amorphous a-BN. Both types of coatings featured hardness of 22–23 GPa; however, the introduction of nitrogen decreased the coating’s elastic modulus from 342 to 266 GPa and increased the elastic recovery from 62 to 72%, which enhanced the wear resistance of the coatings. N-doped coatings demonstrated a relatively low friction coefficient of 0.4 and a specific wear rate of ~1.3 × 10−6 mm3N−1m−1. Electrochemical investigations revealed that the introduction of nitrogen into the coatings resulted in the decrease of corrosion current density in 3.5% NaCl and 1N H2SO4 solution up to 3.5 and 5 times, correspondingly. The superior corrosion resistance of Zr-В-N coatings was related to the finer grains size and increased volume of the BN phase. The samples ZrB2 and Zr-B-N resisted oxidation at 600 °C. N-free coatings resisted oxidation (up to 800 °С) and the diffusion of metallic elements from the substrate better. In contrast, Zr-B-N coatings experienced total oxidation and formed loose oxide layers, which could be easily removed from the substrate.


Coatings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 397 ◽  
Author(s):  
Hehong Zhang ◽  
Xiaofeng Zhang ◽  
Xuhui Zhao ◽  
Yuming Tang ◽  
Yu Zuo

A chemical conversion coating on 5052 aluminum alloy was prepared by using K2ZrF6 and K2TiF6 as the main salts, KMnO4 as the oxidant and NaF as the accelerant. The surface morphology, structure and composition were analyzed by SEM, EDS, FT–IR and XPS. The corrosion resistance of the conversion coating was studied by salt water immersion and polarization curve analysis. The influence of fluorosilane (FAS-17) surface modification on its antifouling property was also discussed. The results showed that the prepared conversion coating mainly consisted of AlF3·3H2O, Al2O3, MnO2 and TiO2, and exhibited good corrosion resistance. Its corrosion potential in 3.5 wt % NaCl solution was positively shifted about 590 mV and the corrosion current density was dropped from 1.10 to 0.48 μA cm−2. By sealing treatment in NiF2 solution, its corrosion resistance was further improved yielding a corrosion current density drop of 0.04 μA cm−2. By fluorosilane (FAS-17) surface modification, the conversion coating became hydrophobic due to low-surface-energy groups such as CF2 and CF3, and the contact angle reached 136.8°. Moreover, by FAS-17 modification, the corrosion resistance was enhanced significantly and its corrosion rate decreased by about 25 times.


2013 ◽  
Vol 756-759 ◽  
pp. 85-88
Author(s):  
Xiao Ming Wang ◽  
Sheng Zhu ◽  
Qing Chang ◽  
Guo Feng Han

Al-based coating on ZM5 magnesium alloy was prepared by Supersonic Particles Deposition (SPD). Electrochemical working station was utilized to test polarization curve, corrosion potential and electrochemical impedance spectroscopy etc. The results indicted that corrosion potential of Al-Si coating was about-767.6mV, much higher than that of ZM5 Mg-substrate; And corrosion current density of the coating sample decreased three order of magnitude than that of the uncoated. Compared to Mg-substrate, the radius of capacitive impedance arc of the coating enlarged and impedance modulus improved two order of magnitude.


2015 ◽  
Vol 12 (6) ◽  
Author(s):  
Ing-Bang Huang ◽  
Ching Chiang Hwang

The objective of this study is to examine the effect of heat treatment at various temperatures on the corrosion behavior of electroless silver-coated SS 304 in a simulated proton exchange membrane (PEM) fuel cell environment. The corrosion properties of this material were studied using a potentiodynamic polarization technique. X-ray diffraction (XRD) patterns, polarization curves, and scanning electron microscopy (SEM) of coated and heat-treated specimens obtained in various heating temperatures were also utilized. It was found that the corrosion potential of the coated and heat-treated specimens shift toward a noble potential, and a significant decrease in corrosion current density was also observed. The corrosion current density decreased by a factor of about 1/500 for the heat-treated sample of 600 °C compared to the substrate. The heat-treated specimens displayed greater corrosion resistance than unheated and bare ones. According to the polarization studies and SEM images, the heat-treated specimen at 600 °C shows excellent corrosion resistance with a homogeneous dense surface morphology. These results demonstrated the coatings were suited for fuel cell applications in the proton exchange membrane fuel cell (PEMFC) environment.


2020 ◽  
Vol 10 (9) ◽  
pp. 1435-1443
Author(s):  
Dong Wang ◽  
Chenxi Wang ◽  
Changqing Fang ◽  
Xing Zhou ◽  
Mengyuan Pu ◽  
...  

The corrosion process of carbon steel and corrosion resistance behavior of volatile corrosion inhibitor (VCI) under thin electrolyte liquid film containing chloride was investigated by electrochemical measurements and surface characterization. Results indicated that composite VCI was composed of sodium molybdate and sodium benzoate, and exhibited higher corrosion resistance in 3.5% NaCl solution compared with absence of VCI. The corrosion current density obviously decreased with presence of VCI, and the synergies between binary components increased the corrosion inhibiting rate on carbon steel to up to 90%. The corrosion current density of carbon steel increased with increased temperature after volatilization of VCI. A closed container was carried out to mimic atmospheric corrosion condition, and its vapor corrosion inhibition property was evaluated in this closed container. Results showed that the VCI acted as an inhibitor by suppressing anodic dissolution and metallic ion transfer through the formation of protective film. It was also observed that the variation of carbon steel surface with volatilization of VCI was assessed by atomic force microscope (AFM) and scanning electron microscope (SEM). The anodic process for carbon steel without VCI affected the corrosion rate due to accumulation of corrosion products, while the morphology of carbon steel was hardly changed with volatilization of VCI. The results showed that the VCI volatilized to the surface and form to protect film. VCI was automatically volatilized into gas, which protected steel from corrosion. This composite VCI can then be applied as a significant corrosion inhibition method.


2017 ◽  
Vol 898 ◽  
pp. 1369-1380 ◽  
Author(s):  
Hui Min Han ◽  
Dan Tong Wang ◽  
Hua Qian Yu ◽  
Min Zuo ◽  
Li Hong Wang ◽  
...  

The ceria coatings on AZ91 substrates were successfully synthesized by chemical conversion and the corrosion resistance of AZ91 samples with and without ceria coatings were evaluated by means of electrochemical corrosion in 3.5 wt.% NaCl solution. According to the parameters derived from the polarization date, the Icorr (the corrosion current density) values of the coated samples are smaller than that of bare one, indicating that the corrosion resistance of AZ91 alloys has been improved to some extent. The influence of fluoridated pretreatment, inter-layer heat treatment, sintering temperature and the layer of films on the performance of ceria coatings were also investigated. It was found that the inter-layer heat treatment has no influence on improving the anticorrosion resistance of AZ91 alloy. In comparison with the bare one, the Icorr of optimal sample is about 0.0219mA/cm2, which decreases by two orders of magnitude, indicating that the ceria coatings could significantly improve the corrosion resistance of AZ91 magnesium alloy.


2016 ◽  
Vol 852 ◽  
pp. 1325-1333
Author(s):  
Li Chen Zhao ◽  
Shuang Jin Liu ◽  
Yu Min Qi ◽  
Chun Xiang Cui

A binary Mg-4Zn alloy was fabricated as a potential degradable biomaterial. To improve the corrosion resistance of Mg-4Zn alloy, an amorphous micro-arc oxidation (MAO) coating was prepared on the Mg-4Zn substrate. Electrochemical measurements and immersion tests were employed to evaluate the corrosion resistance of the specimen in simulated body fluid (SBF). Electrochemical measurements show that the Mg-4Zn alloy covered with a MAO coating has a much lower corrosion current density and a much greater polarization resistance. Immersion tests suggest that the degradation of Mg-4Zn substrate is relatively serious during the initial 8 h of immersion although it has been protected by a MAO coating. When most micro-pores within the MAO coating have been filled with precipitates resulted from the corrosion of the metal substrate, the degradation of the Mg-4Zn substrate is significantly delayed.


Sign in / Sign up

Export Citation Format

Share Document