scholarly journals CFD Optimization of the Pre-Chamber Geometry for a Gasoline Spark Ignition Engine

2021 ◽  
Vol 6 ◽  
Author(s):  
Haiwen Ge ◽  
Ahmad Hadi Bakir ◽  
Suren Yadav ◽  
Yunseon Kang ◽  
Siva Parameswaran ◽  
...  

In the present paper, an efficient optimization method based on Bayesian updating strategy is developed for the design of a spark-ignition engine equipped with pre-chamber. 3D computational fluid dynamics (CFD) simulation coupled with strategies including design of experiment, genetic algorithm, and machine learning methods is used to optimize the pre-chamber with desired combustion phasing. The optimization process starts from a design of experiment matrix of 11 design parameters, which are used to analytically characterize the pre-chamber geometry and set up the 3D combustion CFD. Taking CA50 as the single objective, the CFD results are then used to train the machine learning models. Different machine learning models are evaluated based on their Root Mean Square Error. Five machine learning models from five different categories are selected for second round evaluation. The trained machine learning model is used in the genetic algorithm optimization, which yields the optimized configuration and is again justified by CFD. The new CFD results based on the optimized design are added into the database to further refine the machine learning model. After 24 iterations for each selected machine learning models, the medium Gaussian support vector machine model is identified as the best method for the present application. Iterations using the medium Gaussian support vector machine model continue until a satisfactory result is achieved. Detailed combustion analysis is conducted to investigate the physical mechanism about how the design of pre-chamber influences the engine's performance. It is found that larger volume of the upper part of the pre-chamber results in stronger jet flow and turbulent intensity which further accelerates the flame propagation inside the pre-chamber, dominating the contrary effects from reduced pressure and temperature. Regression analysis shows that the radius of the pre-chamber is the most influential design parameter. The current work not only sheds light on the optimization of engine design, but also has demonstrated a general strategy applicable to the purpose of arbitrary engine optimization and mechanical system design.

2021 ◽  
Vol 11 (21) ◽  
pp. 9797
Author(s):  
Solaf A. Hussain ◽  
Nadire Cavus ◽  
Boran Sekeroglu

Obesity or excessive body fat causes multiple health problems and diseases. However, obesity treatment and control need an accurate determination of body fat percentage (BFP). The existing methods for BFP estimation require several procedures, which reduces their cost-effectivity and generalization. Therefore, developing cost-effective models for BFP estimation is vital for obesity treatment. Machine learning models, particularly hybrid models, have a strong ability to analyze challenging data and perform predictions by combining different characteristics of the models. This study proposed a hybrid machine learning model based on support vector regression and emotional artificial neural networks (SVR-EANNs) for accurate recent BFP prediction using a primary BFP dataset. SVR was applied as a consistent attribute selection model on seven properties and measurements, using the left-out sensitivity analysis, and the regression ability of the EANN was considered in the prediction phase. The proposed model was compared to seven benchmark machine learning models. The obtained results show that the proposed hybrid model (SVR-EANN) outperformed other machine learning models by achieving superior results in the three considered evaluation metrics. Furthermore, the proposed model suggested that abdominal circumference is a significant factor in BFP prediction, while age has a minor effect.


Author(s):  
Harinarayan Sharma ◽  
Sonam Kumari ◽  
Aniket K. Dutt ◽  
Pawan Kumar ◽  
Mamookho E. Makhatha

Aim: Develop machine learning models for the performance of refrigerator and airconditioning system. Background: The Coefficient Of Performance (COP) of Refrigerator and Air-Conditioning (RAC) is a complex function of evaporative temperature and concentration of nano-particle in lubricants. In recent years, researchers focus on experimental study for improvement of COP. Further, few researchers applied simulation techniques such as fuzzy system, Artificial Neural Network (ANN), simulated annealing, etc. to the Vapour Compression Refrigeration (VCR) cycle. There is a scarcity of modeling research work for the performance of RAC system. Objective: The study aims to develop the machine learning predictive models for the performance of refrigerator and air-conditioning system using experimental data. Methods: The experiment was performed on VCR system to determine COP. Three different concentration of lubricants (added 0.5, 1.0 and 1.5g nano-TiO2 particle on 1 liter of Polyolester (POE) oil) were used. The experimentally calculated COP was used to train and test the machine learning models. Gaussian Process Regression (GPR) and Support Vector Regression (SVR) methods were applied to develop the models. Results: The experimental result reveals that the COP increases with increasing the concentration (of nano particles) at a given temperature. The addition of 0.5 and 1.0g TiO2 in the POE oil shows better rate of increment in the COP in comparison to addition of 1.5g TiO2 in the POE oil. Machine learning models using GPR and SVR with RBF kernel function is the most appropriate machine learning model for the nonlinear relationship between the output parameter (COP) and the input parameter (evaporative temperature and concentration of TiO2). Conclusion: The present study was conducted to investigate the machine learning approaches for performance of RAC system using experimental data sets. The experimental result shows that R134a and TiO2-POE nanolubricant work efficiently and the coefficient of performance of VCR system increases with concentration of nano-particle. The developed model performance is compared using coefficient of correlation and RSME values. After comparison, it is concluded that RBF based GPR model is the best fit machine learning model to predict the COP in the context of any other model for this data set.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Wenjin Zhu ◽  
Zhiming Chao ◽  
Guotao Ma

In this paper, a database developed from the existing literature about permeability of rock was established. Based on the constructed database, a Support Vector Machine (SVM) model with hyperparameters optimised by Mind Evolutionary Algorithm (MEA) was proposed to predict the permeability of rock. Meanwhile, the Genetic Algorithm- (GA-) and Particle Swarm Algorithm- (PSO-) SVM models were constructed to compare the improving effects of MEA on the foretelling accuracy of machine learning models with those of GA and PSO, respectively. The following conclusions were drawn. MEA can increase the predictive accuracy of the constructed machine learning models remarkably in a few iteration times, which has better optimisation performance than that of GA and PSO. MEA-SVM has the best forecasting performance, followed by PSO-SVM, while the estimating precision of GA-SVM is lower than them. The proposed MEA-SVM model can accurately predict the permeability of rock indicating the model having a satisfactory generalization and extrapolation capacity.


Author(s):  
Haiyan Chen ◽  
Yue Zeng ◽  
Yi Li

Abstract The secondary Bjerknes force plays a significant role in the evolution of bubble clusters. However, due to the complex dependence of the force on multiple parameters, it is highly non-trivial to include its effects in the simulations of bubble clusters. In this paper, machine learning is used to develop a data-driven model for the secondary Bjerknes force between two insonated bubbles as a function of the equilibrium radii of the bubbles, the distance between the bubbles, the amplitude and the center frequency of the ultrasound wave. The sign of the force may change with the phase difference between the oscillating bubbles. Meanwhile, the magnitude of the force varies over several orders of magnitude, which poses a serious challenge for the usual machine learning models. To overcome this difficulty, the magnitudes and the signs of the force are separated and modelled separately. A nonlinear regression is obtained with a feed-forward network model for the logarithm of the magnitude, whereas the sign is modelled by a support-vector machine model. The principle, the practical aspects related to the training and validation of the machine models are introduced. The predictions from the models are checked against the values computed from the Keller–Miksis equations. The results show that the models are extremely efficient while providing accurate estimate of the force. The models make it computationally feasible for the future simulations of the bubble clusters to include the effects of the secondary Bjerknes force. Graphic abstract


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254108
Author(s):  
Fatemeh Pouromran ◽  
Srinivasan Radhakrishnan ◽  
Sagar Kamarthi

In current clinical settings, typically pain is measured by a patient’s self-reported information. This subjective pain assessment results in suboptimal treatment plans, over-prescription of opioids, and drug-seeking behavior among patients. In the present study, we explored automatic objective pain intensity estimation machine learning models using inputs from physiological sensors. This study uses BioVid Heat Pain Dataset. We extracted features from Electrodermal Activity (EDA), Electrocardiogram (ECG), Electromyogram (EMG) signals collected from study participants subjected to heat pain. We built different machine learning models, including Linear Regression, Support Vector Regression (SVR), Neural Networks and Extreme Gradient Boosting for continuous value pain intensity estimation. Then we identified the physiological sensor, feature set and machine learning model that give the best predictive performance. We found that EDA is the most information-rich sensor for continuous pain intensity prediction. A set of only 3 features from EDA signals using SVR model gave an average performance of 0.93 mean absolute error (MAE) and 1.16 root means square error (RMSE) for the subject-independent model and of 0.92 MAE and 1.13 RMSE for subject-dependent. The MAE achieved with signal-feature-model combination is less than 1 unit on 0 to 4 continues pain scale, which is smaller than the MAE achieved by the methods reported in the literature. These results demonstrate that it is possible to estimate pain intensity of a patient using a computationally inexpensive machine learning model with 3 statistical features from EDA signal which can be collected from a wrist biosensor. This method paves a way to developing a wearable pain measurement device.


2021 ◽  
Vol 13 (23) ◽  
pp. 4844
Author(s):  
Jisun Shin ◽  
Jong-Seok Lee ◽  
Lee-Hyun Jang ◽  
Jinwook Lim ◽  
Boo-Keun Khim ◽  
...  

A record-breaking agglomeration of Sargassum was packed along the northern Jeju coast in Korea in 2021, and laborers suffered from removing them from the beach. If remote sensing can be used to detect the locations at which Sargassum accumulated in a timely and accurate manner, we could remove them before their arrival and reduce the damage caused by Sargassum. This study aims to detect Sargassum distribution on the coast of Jeju Island using the Geostationary KOMPSAT 2B (GK2B) Geostationary Ocean Color Imager-II (GOCI-II) imagery that was launched in February 2020, with measurements available since October 2020. For this, we used GOCI-II imagery during the first 6 months and machine learning models including Fine Tree, a Fine Gaussian support vector machine (SVM), and Gentle adaptive boosting (GentleBoost). We trained the models with the GOCI-II Rayleigh-corrected reflectance (RhoC) image and a ground truth map extracted from high-resolution images as input and output, respectively. Qualitative and quantitative assessments were carried out using the three machine learning models and traditional methods such as Sargassum indexes. We found that GentleBoost showed a lower false positive (6.2%) and a high F-measure level (0.82), and a more appropriate Sargassum distribution compared to other methods. The application of the machine learning model to GOCI-II images in various atmospheric conditions is therefore considered successful for mapping Sargassum extent quickly, enabling reduction of laborers’ efforts to remove them.


Author(s):  
Jinlong Liu ◽  
Christopher Ulishney ◽  
Cosmin E. Dumitrescu

Abstract Predicting internal combustion (IC) engine variables such as the combustion phasing and duration are essential to zero-dimensional (0D) single-zone engine simulations (e.g., for the Wiebe function combustion model). This paper investigated the use of random forest machine learning models to predict these engine combustion parameters as a modality to reduce expensive engine dynamometer tests. A single-cylinder four-stroke heavy-duty spark-ignition engine fueled with methane was operated at different engine speeds and loads to provide the data for training, validation, and testing the proposed correlated model. Key engine operating variables such as spark timing, mixture equivalence ratio, and engine speed were the model inputs. The performance of the models was validated by comparing the prediction dataset with the experimentally measured results. Results showed that the prediction error of the random forest machine learning algorithm was acceptable, suggesting that it can be used to predict the combustion parameters of interest with acceptable accuracy.


Author(s):  
Shuaib Khan ◽  
Kirubanand V. B

Football has been one of the most popular and loved sports since its birth on November 6th, 1869. The main reason for this is because it is highly unpredictable in nature. Predicting football matches results seems like the perfect problem for machine learning models. But there are various caveats such as picking the right features from an enormous number of available features.  There have been many models which have been applied to various football-related datasets. This paper aims to compare Support Vector Machines a machine learning model and XGBoost an Ensemble learning model and how Ensemble Learning can greatly improve the accuracy of the predictions.


Sign in / Sign up

Export Citation Format

Share Document