scholarly journals 3D Bioprinting at the Frontier of Regenerative Medicine, Pharmaceutical, and Food Industries

2021 ◽  
Vol 2 ◽  
Author(s):  
Qasem Ramadan ◽  
Mohammed Zourob

3D printing technology has emerged as a key driver behind an ongoing paradigm shift in the production process of various industrial domains. The integration of 3D printing into tissue engineering, by utilizing life cells which are encapsulated in specific natural or synthetic biomaterials (e.g., hydrogels) as bioinks, is paving the way toward devising many innovating solutions for key biomedical and healthcare challenges and heralds' new frontiers in medicine, pharmaceutical, and food industries. Here, we present a synthesis of the available 3D bioprinting technology from what is found and what has been achieved in various applications and discussed the capabilities and limitations encountered in this technology.

2020 ◽  
Vol 17 ◽  
Author(s):  
Yashan Feng ◽  
Shijie Zhu ◽  
Di Mei ◽  
Jiang Li ◽  
Jiaxiang Zhang ◽  
...  

: Clinically, the treatment of bone defects remains a significant challenge, as it requires autogenous bone grafts or bone graft substitutes. However, the existing biomaterials often fail to meet the clinical requirements in terms of structural support, bone induction and controllable biodegradability. In the treatment of bone defects, 3D porous scaffolds have at-tracted much attention in the orthopedic field. In terms of appearance and microstructure, complex bone scaffolds created by 3D printing technology are similar to human bone. On this basis, the combination of active substances including cells and growth factors is more conducive to bone tissue reconstruction, which is of great significance for the personalized treatment of bone defects. With the continuous development of 3D printing technology, it has been widely used in bone defect repair as well as diagnosis and rehabilitation, creating an emerging industry with excellent market potential. Meanwhile, the di-verse combination of 3D printing technology with multi-disciplinary fields such as tissue engineering, digital medicine, and materials science has made 3D printing products with good biocompatibility, excellent osteo-inductive capacity and stable mechanical properties. In the clinical application of the repair of bone defects, various biological materials and 3D printing methods have emerged to make patient-specific bioactive scaffolds. The microstructure of 3D printed scaffolds can meet the complex needs of bone defect repair and support the personalized treatment of patients. Some of the new materials and technologies that emerged from the 3D printing industry's advent in the past decade successfully translated into clinical practice. In this article, we first introduced the development and application of different types of materials that were used in 3D bioprinting, including metal, ceramic materials, polymer materials, composite materials, and cell tissue. The combined application of 3D bioprinting and other manufacturing method used for bone tissue engineering are also discussed in this ar-ticle. Finally, we discussed the bottleneck of 3D bioprinting technique and forecasted its research orientation and prospect.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Xiaoming Li ◽  
Rongrong Cui ◽  
Lianwen Sun ◽  
Katerina E. Aifantis ◽  
Yubo Fan ◽  
...  

3D printing technology has recently gained substantial interest for potential applications in tissue engineering due to the ability of making a three-dimensional object of virtually any shape from a digital model. 3D-printed biopolymers, which combine the 3D printing technology and biopolymers, have shown great potential in tissue engineering applications and are receiving significant attention, which has resulted in the development of numerous research programs regarding the material systems which are available for 3D printing. This review focuses on recent advances in the development of biopolymer materials, including natural biopolymer-based materials and synthetic biopolymer-based materials prepared using 3D printing technology, and some future challenges and applications of this technology are discussed.


2021 ◽  
Author(s):  
Shadpour Mallakpour ◽  
Fariba Sirous ◽  
Chaudhery Mustansar Hussain

In recent years, additive manufacturing, or in other words three-dimensional (3D) printing technology has rapidly become one of the hot topics in the world. Among the vast majority of materials,...


Author(s):  
Ranjit Barua ◽  
Sudipto Datta ◽  
Amit Roychowdhury ◽  
Pallab Datta

Three-dimensional or 3D printing technology is a growing interest in medical fields like tissue engineering, dental, drug delivery, prosthetics, and implants. It is also known as the additive manufacturing (AM) process because the objects are done by extruding or depositing the material layer by layer, and the material may be like biomaterials, plastics, living cells, or powder ceramics. Specially in the medical field, this new technology has importance rewards in contrast with conventional technologies, such as the capability to fabricate patient-explicit difficult components, desire scaffolds for tissue engineering, and proper material consumption. In this chapter, different types of additive manufacturing (AM) techniques are described that are applied in the medical field, especially in community health and precision medicine.


2019 ◽  
Vol 20 (18) ◽  
pp. 4628 ◽  
Author(s):  
Kevin Dzobo ◽  
Keolebogile Shirley Caroline M. Motaung ◽  
Adetola Adesida

The promise of regenerative medicine and tissue engineering is founded on the ability to regenerate diseased or damaged tissues and organs into functional tissues and organs or the creation of new tissues and organs altogether. In theory, damaged and diseased tissues and organs can be regenerated or created using different configurations and combinations of extracellular matrix (ECM), cells, and inductive biomolecules. Regenerative medicine and tissue engineering can allow the improvement of patients’ quality of life through availing novel treatment options. The coupling of regenerative medicine and tissue engineering with 3D printing, big data, and computational algorithms is revolutionizing the treatment of patients in a huge way. 3D bioprinting allows the proper placement of cells and ECMs, allowing the recapitulation of native microenvironments of tissues and organs. 3D bioprinting utilizes different bioinks made up of different formulations of ECM/biomaterials, biomolecules, and even cells. The choice of the bioink used during 3D bioprinting is very important as properties such as printability, compatibility, and physical strength influence the final construct printed. The extracellular matrix (ECM) provides both physical and mechanical microenvironment needed by cells to survive and proliferate. Decellularized ECM bioink contains biochemical cues from the original native ECM and also the right proportions of ECM proteins. Different techniques and characterization methods are used to derive bioinks from several tissues and organs and to evaluate their quality. This review discusses the uses of decellularized ECM bioinks and argues that they represent the most biomimetic bioinks available. In addition, we briefly discuss some polymer-based bioinks utilized in 3D bioprinting.


2021 ◽  
Vol 10 (21) ◽  
pp. 4966
Author(s):  
Gia Saini ◽  
Nicole Segaran ◽  
Joseph L. Mayer ◽  
Aman Saini ◽  
Hassan Albadawi ◽  
...  

Regenerative medicine is an emerging field that centers on the restoration and regeneration of functional components of damaged tissue. Tissue engineering is an application of regenerative medicine and seeks to create functional tissue components and whole organs. Using 3D printing technologies, native tissue mimics can be created utilizing biomaterials and living cells. Recently, regenerative medicine has begun to employ 3D bioprinting methods to create highly specialized tissue models to improve upon conventional tissue engineering methods. Here, we review the use of 3D bioprinting in the advancement of tissue engineering by describing the process of 3D bioprinting and its advantages over other tissue engineering methods. Materials and techniques in bioprinting are also reviewed, in addition to future clinical applications, challenges, and future directions of the field.


2020 ◽  
Vol 6 (23) ◽  
pp. eaba7406 ◽  
Author(s):  
Yuwen Chen ◽  
Jiumeng Zhang ◽  
Xuan Liu ◽  
Shuai Wang ◽  
Jie Tao ◽  
...  

Three-dimensional (3D) printing technology has great potential in advancing clinical medicine. Currently, the in vivo application strategies for 3D-printed macroscale products are limited to surgical implantation or in situ 3D printing at the exposed trauma, both requiring exposure of the application site. Here, we show a digital near-infrared (NIR) photopolymerization (DNP)–based 3D printing technology that enables the noninvasive in vivo 3D bioprinting of tissue constructs. In this technology, the NIR is modulated into customized pattern by a digital micromirror device, and dynamically projected for spatially inducing the polymerization of monomer solutions. By ex vivo irradiation with the patterned NIR, the subcutaneously injected bioink can be noninvasively printed into customized tissue constructs in situ. Without surgery implantation, a personalized ear-like tissue constructs with chondrification and a muscle tissue repairable cell-laden conformal scaffold were obtained in vivo. This work provides a proof of concept of noninvasive in vivo 3D bioprinting.


Sign in / Sign up

Export Citation Format

Share Document