scholarly journals Role of the Human Breast Milk-Associated Microbiota on the Newborns’ Immune System: A Mini Review

2017 ◽  
Vol 8 ◽  
Author(s):  
Marco Toscano ◽  
Roberta De Grandi ◽  
Enzo Grossi ◽  
Lorenzo Drago
Author(s):  
Tereza Pavlova ◽  
Zdenek Spacil ◽  
Veronika Vidova ◽  
Filip Zlamal ◽  
Eliska Cechova ◽  
...  

Objective: Lipids are secreted into milk as bilayer-coated structures: milk lipid globules (MLGs). Adipophilin (ADRP) and perilipin 3 (TIP47) are associated with MLGs in human breast milk; however, the role of these proteins in milk lipid secretion is not fully understood. The aim of the study was to investigate levels of ADRP, TIP47 and total lipid content in human breast milk, their mutual correlations and dynamics during lactation. Research Methods & Procedures: Milk samples from 22 healthy lactating women (Caucasian, Central European) were collected at five time points during lactation (1–3, 12–14, 29–30, 88–90 and 178–180 days postpartum). Mass spectrometry-based method was used for quantification of ADRP and TIP47 in the samples. The gravimetric method was used to determine milk total lipid content. Results: We observed distinctive trends in ADRP, TIP47 levels and lipid content in human breast milk during the first 6 months of lactation. We also found a significant association between lipid content and ADRP, lipid content and TIP47, and ADRP and TIP47 concentrations in breast milk at all sampling points. Moreover, we derived an equation for estimating the mean lipid content of milk based on ADRP concentration in human breast milk. Conclusions: A mass spectrometry-based method was developed for quantifying ADRP and TIP47 in human breast milk. Strong mutual correlations were found between ADRP, TIP47 and total lipid content in human breast milk.


2014 ◽  
Vol 41 (2) ◽  
pp. 423-435 ◽  
Author(s):  
Brett M. Jakaitis ◽  
Patricia W. Denning

2009 ◽  
Vol 168 (10) ◽  
pp. 1277-1279 ◽  
Author(s):  
Ulrike B. Zeilhofer ◽  
Bernhard Frey ◽  
Jeanette Zandee ◽  
Vera Bernet

Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1643 ◽  
Author(s):  
Anna Ojo-Okunola ◽  
Mark Nicol ◽  
Elloise du Toit

It is well-known that, beyond nutritional components, human breast milk (HBM) contains a wide variety of non-nutritive bio-factors perfectly suited for the growing infant. In the pre-2000 era, HBM was considered sterile and devoid of micro-organisms. Though HBM was not included as part of the human microbiome project launched in 2007, great strides have been made in studying the bacterial diversity of HBM in both a healthy state and diseased state, and in understanding their role in infant health. HBM provides a vast array of beneficial micro-organisms that play a key role in colonizing the infant’s mucosal system, including that of the gut. They also have a role in priming the infant’s immune system and supporting its maturation. In this review, we provide an in-depth and updated insight into the immunomodulatory, metabolic, and anti-infective role of HBM bacteriome (bacterial community) and its effect on infant health. We also provide key information from the literature by exploring the possible origin of microbial communities in HBM, the bacterial diversity in this niche and the determinants influencing the HBM bacteriome. Lastly, we investigate the role of the HBM bacteriome in maternal infectious disease (human immunodeficiency virus (HIV) and mastitis)), and cancer. Key gaps in HBM bacterial research are also identified.


Author(s):  
Bita Najafian ◽  
Mohammad Hossein Khosravi

Human breast milk (HBM) not only is a source of nutrition for infants but also contains a variety of biologically active components and bacterial species. These molecules and bacteria guide both intestinal microbiota and infantile immune system. Recently published studies have found several vital roles for gut microbiota including effects on the individual’s personality, decreased predisposition to the diseases, and a variety of other health-related consequences such as possible therapeutic effects or preventing role. In this chapter the components of human breast milk and its effect on shaping the human gut microbiota have been reviewed.


Author(s):  
Ritu Cheema ◽  
Elizabeth Partridge ◽  
Laura R. Kair ◽  
Kara M. Kuhn-Riordon ◽  
Angelique I. Silva ◽  
...  

The severe acute respiratory syndrome–coronavirus-2 (SARS-CoV-2) pandemic has impacted all patient populations including pregnant mothers. There is an incomplete understanding of SARS-CoV-2 pathogenesis and transmission potential at this time and the resultant anxiety has led to variable breastfeeding recommendations for suspected or confirmed mothers with novel coronavirus disease 2019 (COVID-19). Due to the potential concern for transmission of infection from maternal respiratory secretions to the newborn, temporary separation of the maternal-baby dyad, allowing for expressed breast milk to be fed to the infant, was initially recommended but later revised to include breastfeeding by the American Academy of Pediatrics in contrast to international societies, which recommend direct breastfeeding. This separation can have negative health and emotional implications for both mother and baby. Only two publications have reported SARS-CoV-2 in human breast milk but the role of breast milk as a vehicle of transmission of COVID-19 to the newborns still remains unclear and may indeed be providing protective antibodies against SARS-CoV-2 infection even in infected neonates. Other modes of transmission of infection to neonates from infected mothers or any care providers cannot be overemphasized. Symptomatic mothers on hydroxychloroquine can safely breastfeed and no adverse effects were reported in a baby treated with remdesivir in another drug trial. The excretion of sarilumab in human breast milk is unknown at this time. Hence, given the overall safety of breast milk and both short-term and long- term nutritional, immunological, and developmental advantages of breast milk to newborn, breast milk should not be withheld from baby. The setting of maternal care, severity of maternal infection and availability of resources can impact the decision of breastfeeding, the role of shared decision making on breastfeeding between mother and physician needs to be emphasized. We strongly recommend direct breastfeeding with appropriate hygiene precautions unless the maternal or neonatal health condition warrants separation of this dyad. Key Points


Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 944 ◽  
Author(s):  
Malgorzata Witkowska-Zimny ◽  
Ewa Kamińska-El-Hassan ◽  
Edyta Wróbel

Background: Human breast milk provides a child with complete nutrition but is also a popular therapeutic remedy that has been used in traditional, natural pharmacopeia, and ethnomedicine for many years. The aim of this current review is to summarize studies of non-nutritional uses of mothers’ milk. Methods: Two databases (PubMed and Google Scholar) were searched with a combination of twelve search terms. We selected articles that were published between 1 January 2010, and 1 January 2019. The language of publication was limited to English. Results: Fifteen studies were included in the systematic review. Ten of these were randomized controlled trials, one was a quasi-experimental study, two were in vitro studies, and four employed an animal research model. Conclusions: Many human milk components have shown promise in preclinical studies and are undergoing active clinical evaluation. The protective and treatment role of fresh breast milk is particularly important in areas where mothers and infants do not have ready access to medicine.


2019 ◽  
Vol 149 (12) ◽  
pp. 2236-2246 ◽  
Author(s):  
Lauren R Brink ◽  
Katelin Matazel ◽  
Brian D Piccolo ◽  
Anne K Bowlin ◽  
Sree V Chintapalli ◽  
...  

ABSTRACT Background Early infant diet influences postnatal gut microbial development, which in turn can modulate the developing immune system. Objectives The aim of this study was to characterize diet-specific bioregional microbiota differences in piglets fed either human breast milk (HM) or infant formula. Methods Male piglets (White Dutch Landrace Duroc) were raised on HM or cow milk formula (MF) from postnatal day (PND) 2 to PND 21 and weaned to an ad libitum diet until PND 51. Piglets were euthanized on either PND 21 or PND 51, and the gastrointestinal contents were collected for 16s RNA sequencing. Data were analyzed using the Quantitative Insight into Microbial Ecology. Diversity measurements (Chao1 and Shannon) and the Wald test were used to determine relative abundance. Results At PND 21, the ileal luminal region of HM-fed piglets showed lower Chao1 operational taxonomic unit diversity, while Shannon diversity was lower in cecal, proximal colon (PC), and distal colon (DC) luminal regions, relative to MF-fed piglets. In addition, at PND 51, the HM-fed piglets had lower genera diversity within the jejunum, ileum, PC, and DC luminal regions, relative to MF-fed piglets. At PND 21, Turicibacter was 4- to 5-fold lower in the HM-fed piglets’ ileal, cecal, PC, and DC luminal regions, relative to the MF-fed piglets. Campylobacter is 3- to 6-fold higher in HM-fed piglets duodenal, ileal, cecal, PC, and DC luminal regions, in comparison to MF-fed piglets. Furthermore, the large intestine (cecum, PC, and rectum) luminal region of HM-fed piglets showed 4- to 7-fold higher genera that belong to class Bacteroidia, in comparison to MF-fed piglets at PND 21. In addition, at PND 51 distal colon lumen of HM-fed piglets showed 1.5-fold higher genera from class Bacteroidia than the MF-fed piglets. Conclusions In the large intestinal regions (cecum, PC, and rectum), MF diet alters microbiota composition, relative to HM diet, with sustained effects after weaning from the neonatal diet. These microbiota changes could impact immune system and health outcomes later in life.


2020 ◽  
Vol 68 (45) ◽  
pp. 12606-12616
Author(s):  
Adrián Cortés-Martín ◽  
Rocío García-Villalba ◽  
Izaskun García-Mantrana ◽  
Ana Rodríguez-Varela ◽  
María Romo-Vaquero ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document