scholarly journals Effects of Extended Postmortem Interval on Microbial Communities in Organs of the Human Cadaver

2020 ◽  
Vol 11 ◽  
Author(s):  
Holly Lutz ◽  
Alexandria Vangelatos ◽  
Neil Gottel ◽  
Antonio Osculati ◽  
Silvia Visona ◽  
...  

Human thanatomicrobiota studies have shown that microorganisms inhabit and proliferate externally and internally throughout the body and are the primary mediators of putrefaction after death. Yet little is known about the source and diversity of the thanatomicrobiome or the underlying factors leading to delayed decomposition exhibited by reproductive organs. The use of the V4 hypervariable region of bacterial 16S rRNA gene sequences for taxonomic classification (“barcoding”) and phylogenetic analyses of human postmortem microbiota has recently emerged as a possible tool in forensic microbiology. The goal of this study was to apply a 16S rRNA barcoding approach to investigate variation among different organs, as well as the extent to which microbial associations among different body organs in human cadavers can be used to predict forensically important determinations, such as cause and time of death. We assessed microbiota of organ tissues including brain, heart, liver, spleen, prostate, and uterus collected at autopsy from criminal casework of 40 Italian cadavers with times of death ranging from 24 to 432 h. Both the uterus and prostate had a significantly higher alpha diversity compared to other anatomical sites, and exhibited a significantly different microbial community composition from non-reproductive organs, which we found to be dominated by the bacterial orders MLE1-12, Saprospirales, and Burkholderiales. In contrast, reproductive organs were dominated by Clostridiales, Lactobacillales, and showed a marked decrease in relative abundance of MLE1-12. These results provide insight into the observation that the uterus and prostate are the last internal organs to decay during human decomposition. We conclude that distinct community profiles of reproductive versus non-reproductive organs may help guide the application of forensic microbiology tools to investigations of human cadavers.

Zootaxa ◽  
2020 ◽  
Vol 4819 (2) ◽  
pp. 295-315
Author(s):  
HIROSHI KAJIHARA

The heteronemertean Cerebratulus orochi sp. nov. is described based on material collected intertidally at a muddy beach in Akkeshi, northern Japan. For the last 80 years, the species has been confused with Cerebratulus marginatus Renier, 1804; the latter was originally described from the Adriatic and once believed to occur in many places in the northern hemisphere including Japan. Cerebratulus orochi sp. nov. is morphologically different from all the congeners including C. marginatus by the following combination of characters: several layers of diagonal-muscle meshwork coated with connective tissue, proximo-distally distributed in cross section from the distal portion of the body-wall outer longitudinal muscle layer to the cutis-gland zone throughout the anterior portion of the body from the precerebral to the foregut regions; the cephalic vascular system consisting of lateral and mid-dorsal vessels; and the sub-rhynchocoelic vessel possessing a pair of antero-lateral diverticula before the former forks posteriorly into a pair of lower lateral vessels in the post-cerebral, pre-oral region. Previous records of C. marginatus from Japanese waters are no longer considered to be substantiated. Multi-locus phylogenetic analyses based on the mitochondrial 16S rRNA and cytochrome c oxidase subunit I (COI), as well as the nuclear 18S rRNA, 28S rRNA, and histone H3 genes among heteronemerteans comprising the “Cerebratulus clade” indicated that C. orochi sp. nov. was closely related to C. cf. marginatus from the US Pacific coast. A MegaBLAST search at the NCBI website with the 16S rRNA gene sequence from C. orochi sp. nov. followed by a couple of species delimitation analyses suggests that larvae of the species are also distributed in Vostok Bay, Far East Russia.


2021 ◽  
Vol 11 (5) ◽  
pp. 350
Author(s):  
Maartje I. Kristensen ◽  
Karin M. de Winter-de Groot ◽  
Gitte Berkers ◽  
Mei Ling J. N. Chu ◽  
Kayleigh Arp ◽  
...  

Ivacaftor has been shown to restore the functionality of the S1251N (also known as c.3752G>A) mutated CFTR, which may cause alterations in both airway and gut physiology and micro-environment, resulting in a change of microbiota in these organs. The aim of the present study was to analyze the effects of ivacaftor on the microbial community composition of both airway and gut in subjects with CF carrying one S1251N mutation, using a 16S rRNA gene-based sequencing approach. In 16 subjects with CF, repetitive samples from airways and gut were collected just before, and 2 months after, and, for 8 patients, also 9 and 12 months after, start of ivacaftor. 16S rRNA based sequencing identified 344 operational taxonomical units (OTUs) in a total of 139 samples (35 nasopharyngeal, 39 oropharyngeal, 29 sputum, and 36 fecal samples). Ivacaftor significantly enhanced bacterial diversity and overall microbiota composition in the gut (p < 0.01). There were no significant changes in the overall microbial composition and alpha diversity in upper and lower airways of these patients after ivacaftor treatment. Treatment with ivacaftor induces changes in gut microbiota whereas airway microbiota do not change significantly over time.


Nematology ◽  
2018 ◽  
Vol 20 (7) ◽  
pp. 653-669 ◽  
Author(s):  
Oleg Gorgadze ◽  
Elena Fanelli ◽  
Manana Lortkhipanidze ◽  
Alberto Troccoli ◽  
Medea Burjanadze ◽  
...  

Summary A new species of entomopathogenic nematode, Steinernema borjomiense n. sp., was isolated from the body of the host insect, Oryctes nasicornis (Coleoptera: Scarabaeidae), in Georgia, in the territory of Borjomi-Kharagauli. Morphological characters indicate that the new species is closely related to species of the feltiae-group. The infective juveniles are characterised by the following morphological characters: body length of 879 (777-989) μm, distance between the head and excretory pore = 72 (62-80) μm, pharynx length = 132 (122-142) μm, tail length = 70 (60-80) μm, ratio a = 26.3 (23.0-29.3), H% = 45 (40-51), D% = 54 (47-59), E% = 102 (95-115), and lateral fields consisting of seven ridges (eight incisures) at mid-body. Steinernema borjomiense n. sp. was molecularly characterised by sequencing three ribosomal regions (the ITS, the D2-D3 expansion domains and the 18S rRNA gene) and the mitochondrial COI gene. Phylogenetic analyses revealed that S. borjomiense n. sp. differs from all other known species of Steinernema and is a member of the monticolum-group.


2005 ◽  
Vol 55 (3) ◽  
pp. 1167-1170 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Kook Hee Kang ◽  
Soo-Hwan Yeo ◽  
Tae-Kwang Oh

A Gram-negative, non-spore-forming, yellow-pigmented, slightly halophilic bacterial strain, SW-109T, was isolated from a tidal flat of the Yellow Sea in Korea, and subjected to a polyphasic taxonomic study. This isolate did not produce bacteriochlorophyll a and contained ubiquinone-10 as the predominant respiratory lipoquinone and C18 : 1 ω7c as the major fatty acid. The DNA G+C content was 60·3 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain SW-109T is phylogenetically affiliated to the genus Erythrobacter of the family Sphingomonadaceae. Strain SW-109T exhibited levels of 16S rRNA gene sequence similarity to the type strains of Erythrobacter species of 94·0–96·3 %, making it possible to categorize strain SW-109T as a species that is separate from previously recognized Erythrobacter species. On the basis of its phenotypic properties and phylogenetic distinctiveness, SW-109T (=KCTC 12311T=JCM 12599T) was classified as the type strain of a novel Erythrobacter species, for which the name Erythrobacter luteolus sp. nov. is proposed.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1907.2-1907
Author(s):  
Y. Tsuji ◽  
M. Tamai ◽  
S. Morimoto ◽  
D. Sasaki ◽  
M. Nagayoshi ◽  
...  

Background:Anti-citrullinated protein antibody (ACPA) production is observed in several organs even prior to the onset of rheumatoid arthritis (RA), and oral mucosa is considered to be one of the important tissues. The presence of HLA-DRB1*SE closely associates with ACPA production. Saliva is considered to reflect the oral microbiota including periodontal disease. Alteration of oral microbiota of RA becomes to be normalized by DMARDs treatment, however, the interaction of HLA-DRB1*SE, ACPA and oral microbiota of RA patients remains to be elucidated.Objectives:The Nagasaki Island Study, which had started in 2014 collaborating with Goto City, is intended for research of the preclinical stage of RA, including ACPA/HLA genotype screening and ultrasound and magnetic resonance imaging examinations in high-risk subjects. Using the samples accumulated in this cohort, we have tried to investigate the difference of oral microbiota among RA patients and healthy subjects regarding to ACPA and HLA-DRB1*SE.Methods:Blood and salivary samples were obtained from 1422 subjects out of 4276 who have participated in the Nagasaki Island Study from 2016 to 2018. ACPA positivity was 1.7 % in total. Some of RA patients resided in Goto City participated in the Nagasaki Island Study. At this point, we selected 291 subjects, who were ACPA positive non-RA healthy subjects (n=22) and patients with RA (n=33, 11 subjects were ACPA positive and 22 ACPA negative respectively) as the case, age and gender matched ACPA negative non-RA healthy subjects (n=236) as the control. ACPA was measured by an enzyme-linked immunosorbent assay, and HLA genotyping was quantified by next-generation sequencing (Ref.1). The operational taxonomic unit (OUT) analysis using 16S rRNA gene sequencing were performed. The richness of microbial diversity within-subject (alpha diversity) was scaled via Shannon entropy. The dissimilarity between microbial community composition was calculated using Bray-Curtis distance as a scale, and differences between groups (beta diversity) were tested by permutational multivariate analysis of variance (PERMANOVA). In addition, UniFrac distance calculated in consideration of the distance on the phylogenetic tree were performed.Results:Median age 70 y.o., % Female 58.8 %. Among RA and non-RA subjects, not alpha diversity but beta diversity was statistically significance (p=0.022, small in RA). In RA subjects, both alpha and beta diversity is small (p<0.0001), especially significant in ACPA positive RA (Figure 1). Amongt RA subjects, presence of HLA-DRB1*SE did not show the difference but the tendency of being small of alpha diversity (p=0.29).Conclusion:Our study has suggested for the first time the association of oral microbiota alteration with the presence of ACPA and HLA-DRB1*SE. Oral dysbiosis may reflect the immunological status of patients with RA.References:[1]Kawaguchi S, et al. Methods Mol Biol 2018;1802: 22Disclosure of Interests:None declared


2012 ◽  
Vol 62 (Pt_9) ◽  
pp. 2163-2168 ◽  
Author(s):  
Yong-Taek Jung ◽  
Ji-Hoon Kim ◽  
So-Jung Kang ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-staining-negative, non-flagellated, non-gliding and pleomorphic bacterial strain, designated DPG-25T, was isolated from seawater in a seaweed farm in the South Sea in Korea and its taxonomic position was investigated by using a polyphasic approach. Strain DPG-25T grew optimally at 25 °C, at pH 7.0–7.5 and in the presence of 2 % (w/v) NaCl. Flexirubin-type pigments were not produced. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain DPG-25T formed a cluster with the type strains of Actibacter sediminis , Aestuariicola saemankumensis and Lutimonas vermicola . Strain DPG-25T exhibited 16S rRNA gene sequence similarity values of 95.3, 93.1 and 93.6 % to the type strains of Actibacter sediminis , Aestuariicola saemankumensis and L. vermicola , respectively. Strain DPG-25T contained MK-6 as the predominant menaquinone and iso-C15 : 0 and iso-C17 : 0 3-OH as the major fatty acids. The major polar lipids detected in strain DPG-25T were phosphatidylethanolamine and one unidentified lipid. The DNA G+C content was 39.9 mol%. Differential phenotypic properties and the phylogenetic distinctiveness of strain DPG-25T demonstrated that this strain is distinguishable from Actibacter sediminis , Aestuariicola saemankumensis and L. vermicola . On the basis of the data presented here, strain DPG-25T represents a novel species in a novel genus of the family Flavobacteriaceae , for which the name Namhaeicola litoreus gen. nov., sp. nov. is proposed. The type strain of Namhaeicola litoreus is DPG-25T ( = KCTC 23702T  = CCUG 61485T).


2015 ◽  
Vol 65 (Pt_4) ◽  
pp. 1207-1212 ◽  
Author(s):  
Hong-Fei Wang ◽  
Yong-Guang Zhang ◽  
Ji-Yue Chen ◽  
Jian-Wei Guo ◽  
Li Li ◽  
...  

A novel endophytic actinobacterium, designated EGI 6500707T, was isolated from the surface-sterilized root of a halophyte Anabasis elatior (C. A. Mey.) Schischk collected from Urumqi, Xinjiang province, north-west China, and characterized using a polyphasic approach. Cells were Gram-stain-positive, non-motile, short rods and produced white colonies. Growth occurred at 10–45 °C (optimum 25–30 °C), at pH 5–10 (optimum pH 8) and in presence of 0–4 % (w/v) NaCl (optimum 0–3 %). The predominant menaquinone was MK-9. The diagnostic phospholipids were diphosphatidylglycerol and phosphatidylglycerol. The major fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The DNA G+C content of strain EGI 6500707T was 69.1 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain EGI 6500707T should be placed in the genus Frigoribacterium (family Microbacteriaceae , phylum Actinobacteria ), and that the novel strain exhibited the highest 16S rRNA gene sequence similarity to Frigoribacterium faeni JCM 11265T (99.1 %) and Frigoribacterium mesophilum MSL-08T (96.5 %). DNA–DNA relatedness between strain EGI 6500707T and F. faeni JCM 11265T was 47.2 %. On the basis of phenotypic and chemotaxonomic characteristics, phylogenetic analysis and DNA–DNA relatedness data, strain EGI 6500707T represents a novel species of the genus Frigoribacterium , for which the name Frigoribacterium endophyticum sp. nov. is proposed. The type strain is EGI 6500707T ( = JCM 30093T = KCTC 29493T).


2020 ◽  
Vol 11 ◽  
Author(s):  
Pasquale Alibrandi ◽  
Sylvia Schnell ◽  
Silvia Perotto ◽  
Massimiliano Cardinale

The endophytic microbiota can establish mutualistic or commensalistic interactions within the host plant tissues. We investigated the bacterial endophytic microbiota in three species of Mediterranean orchids (Neottia ovata, Serapias vomeracea, and Spiranthes spiralis) by metabarcoding of the 16S rRNA gene. We examined whether the different orchid species and organs, both underground and aboveground, influenced the endophytic bacterial communities. A total of 1,930 operational taxonomic units (OTUs) were obtained, mainly Proteobacteria and Actinobacteria, whose distribution model indicated that the plant organ was the main determinant of the bacterial community structure. The co-occurrence network was not modular, suggesting a relative homogeneity of the microbiota between both plant species and organs. Moreover, the decrease in species richness and diversity in the aerial vegetative organs may indicate a filtering effect by the host plant. We identified four hub OTUs, three of them already reported as plant-associated taxa (Pseudoxanthomonas, Rhizobium, and Mitsuaria), whereas Thermus was an unusual member of the plant microbiota. Core microbiota analysis revealed a selective and systemic ascent of bacterial communities from the vegetative to the reproductive organs. The core microbiota was also maintained in the S. spiralis seeds, suggesting a potential vertical transfer of the microbiota. Surprisingly, some S. spiralis seed samples displayed a very rich endophytic microbiota, with a large number of OTUs shared with the roots, a situation that may lead to a putative restoring process of the root-associated microbiota in the progeny. Our results indicate that the bacterial community has adapted to colonize the orchid organs selectively and systemically, suggesting an active involvement in the orchid holobiont.


Author(s):  
Kiran Kirdat ◽  
Bhavesh Tiwarekar ◽  
Vipool Thorat ◽  
Shivaji Sathe ◽  
Yogesh Shouche ◽  
...  

Sugarcane Grassy Shoot (SCGS) disease is known to be related to Rice Yellow Dwarf (RYD) phytoplasmas (16SrXI-B group) which are found predominantly in sugarcane growing areas of the Indian subcontinent and South-East Asia. The 16S rRNA gene sequences of SCGS phytoplasma strains belonging to the 16SrXI-B group share 98.07 % similarity with ‘Ca. Phytoplasma cynodontis’ strain BGWL-C1 followed by 97.65 % similarity with ‘Ca. P. oryzae’ strain RYD-J. Being placed distinctly away from both the phylogenetically related species, the taxonomic identity of SCGS phytoplasma is unclear and confusing. We attempted to resolve the phylogenetic positions of SCGS phytoplasma based on the phylogenetic analysis of 16S rRNA gene (>1500 bp), nine housekeeping genes (>3500 aa), core genome phylogeny (>10 000 aa) and OGRI values. The draft genome sequences of SCGS phytoplasma (strain SCGS) and Bermuda Grass White leaf (BGWL) phytoplasma (strain LW01), closely related to ‘Ca. P. cynodontis’, were obtained. The SCGS genome was comprised of 29 scaffolds corresponding to 505 173 bp while LW01 assembly contained 21 scaffolds corresponding to 483 935 bp with the fold coverages over 330× and completeness over 90 % for both the genomes. The G+C content of SCGS was 19.86 % while that of LW01 was 20.46 %. The orthoANI values for the strain SCGS against strains LW01 was 79.42 %, and dDDH values were 22. Overall analysis reveals that SCGS phytoplasma forms a distant clade in RYD group of phytoplasmas. Based on phylogenetic analyses and OGRI values obtained from the genome sequences, a novel taxon ‘Candidatus Phytoplasma sacchari’ is proposed.


2020 ◽  
Author(s):  
Naohisa Wada ◽  
Hideaki Yuasa ◽  
Rei Kajitani ◽  
Yasuhiro Gotoh ◽  
Yoshitoshi Ogura ◽  
...  

AbstractBackgroundPopulation outbreaks of the crown-of-thorns starfish (Acanthaster planci sensu lato; COTS), a primary predator of reef-building corals in the Indo-Pacific Ocean, are major concerns in coral reef management. While biological and ecological knowledge of COTS has been accumulating since the 1960s, little is known about its associated bacteria. The aim of this study was to provide fundamental information on dominant COTS-associated bacteria through a multifaceted molecular approach.MethodsA total of 205 COTS individuals from 17 locations throughout the Indo-Pacific Ocean were examined for the presence of COTS-associated bacteria. We conducted 16S rRNA metabarcoding of COTS to determine the bacterial profiles of different parts of the body, and generated a full-length 16S rRNA gene sequence from a single dominant bacterium, which we designated COTS27. We performed phylogenetic analysis to determine the taxonomy, screening of COTS27 across the Indo-Pacific, FISH to visualize it within the COTS tissues, and reconstruction of the chromosome from the hologenome sequence data.ResultsWe discovered that a single bacterium exists at high densities in the subcuticular space in COTS forming a biofilm-like structure between the cuticle and the epidermis. COTS27 belongs to a clade that presumably represents a distinct order (so-called marine spirochetes) in the phylum Spirochaetes and is universally present in COTS throughout the Indo-Pacific Ocean. The reconstructed genome of COTS27 includes some genetic traits that are probably linked to adaptation to marine environments and evolution as an extracellular endosymbiont in subcuticular spaces.ConclusionsCOTS27 can be found in three allopatrically speciated COTS species, ranging from northern Red Sea to the Pacific, implying that symbiotic relationship arose before the speciation (approximately 2 million years ago). The universal association of COTS27 with COTS and nearly mono-specific association at least with the Indo-Pacific COTS potentially provides a useful model system for studying symbiont-host interactions in marine invertebrates.


Sign in / Sign up

Export Citation Format

Share Document