scholarly journals Characterization of Biofilm Formation by Mycobacterium chimaera on Medical Device Materials

2021 ◽  
Vol 11 ◽  
Author(s):  
Archana D. Siddam ◽  
Shari J. Zaslow ◽  
Yi Wang ◽  
K. Scott Phillips ◽  
Matthew D. Silverman ◽  
...  

Non-tuberculous mycobacteria (NTM) are widespread in the environment and are a public health concern due to their resistance to antimicrobial agents. The colonization of surgical heater-cooler devices (HCDs) by the slow-growing NTM species Mycobacterium chimaera has recently been linked to multiple invasive infections in patients worldwide. The resistance of M. chimaera to antimicrobials may be aided by a protective biofilm matrix of extracellular polymeric substances (EPS). This study explored the hypothesis that M. chimaera can form biofilms on medically relevant materials. Several M. chimaera strains, including two HCD isolates, were used to inoculate a panel of medical device materials. M. chimaera colonization of the surfaces was monitored for 6 weeks. M. chimaera formed a robust biofilm at the air-liquid interface of borosilicate glass tubes, which increased in mass over time. M. chimaera was observed by 3D Laser Scanning Microscopy to have motility during colonization, and form biofilms on stainless steel, titanium, silicone and polystyrene surfaces during the first week of inoculation. Scanning electron microscopy (SEM) of M. chimaera biofilms after 4 weeks of inoculation showed that M. chimaera cells were enclosed entirely in extracellular material, while cryo-preserved SEM samples further revealed that an ultrastructural component of the EPS matrix was a tangled mesh of 3D fiber-like projections connecting cells. Considering that slow-growing M. chimaera typically has culture times on the order of weeks, the microscopically observed ability to rapidly colonize stainless steel and titanium surfaces in as little as 24 h after inoculation is uncharacteristic. The insights that this study provides into M. chimaera colonization and biofilm formation of medical device materials are a significant advance in our fundamental understanding of M. chimaera surface interactions and have important implications for research into novel antimicrobial materials, designs and other approaches to help reduce the risk of infection.

2020 ◽  
Vol 12 (21) ◽  
pp. 8863
Author(s):  
Jie Mei ◽  
Huize Chen ◽  
Qiang Liao ◽  
Abdul-Sattar Nizami ◽  
Ao Xia ◽  
...  

Dark fermentation of organic wastes, such as food waste and algae, via mixed hydrogen-producing bacteria (HPB) is considered a sustainable approach for hydrogen production. The biofilm system protects microorganisms from the harmful environment and avoids the excessive loss of bacteria caused by washout, which ensures that the dark fermentation process remains stable. In this study, a downflow anaerobic packed-bed reactor was commissioned to investigate the biofilm formation process of mixed HPB under various operational parameters. Scanning electron microscopy indicated changes in surface morphology during the biofilm formation period. Proteins and polysaccharides in extracellular polymeric substances were identified by confocal laser scanning microscopy to reveal their distribution characteristics. A hydraulic retention time of 0.5 d, a substrate concentration of 15 g/L and an HPB inoculum ratio of 35% were identified as the optimal operational parameters for biofilm formation. The diversity of bacteria between suspension and biofilm showed significantly different distributions; Clostridiales and Lactobacillales were identified as the dominant orders in the biofilm formation process. The abundances of Clostridiales and Lactobacillales were 15.1% and 56.2% in the biofilm, respectively.


Author(s):  
S. N. Sarah Shafiei ◽  
K. Ahmad ◽  
N. F. M. Ikhsan ◽  
S. I. Ismail ◽  
K. Sijam

Abstract Xanthomonas oryzae pv. oryzae (Xoo), a pathogen responsible for rice bacterial leaf blight, produces biofilm to protect viable Xoo cells from antimicrobial agents. A study was conducted to determine the potency of Acacia mangium methanol (AMMH) leaf extract as a Xoo biofilm inhibitor. Four concentrations (3.13, 6.25, 9.38, and 12.5 mg/mL) of AMMH leaf extract were tested for their ability to inhibit Xoo biofilm formation on a 96-well microtiter plate. The results showed that the negative controls had the highest O.D. values from other treatments, indicating the intense formation of biofilm. This was followed by the positive control (Streptomycin sulfate, 0.2 mg/mL) and AMMH leaf extract at concentration 3.13 mg/mL, which showed no significant differences in their O.D. values (1.96 and 1.57, respectively). All other treatments at concentrations of 6.25, 9.38, and 12.5 mg/mL showed no significant differences in their O.D. values (0.91, 0.79, and 0.53, respectively). For inhibition percentages, treatment with concentration 12.5 mg/mL gave the highest result (81.25%) followed by treatment at concentrations 6.25 and 9.38 mg/mL that showed no significant differences in their inhibition percentage (67.75% and 72.23%, respectively). Concentration 3.13 mg/mL resulted in 44.49% of biofilm inhibition and the positive control resulted in 30.75% of biofilm inhibition. Confocal laser scanning microscopy (CLSM) analysis of Xoo biofilm inhibition and breakdown showed the presence of non-viable Xoo cells and changes in aggregation size due to increase in AMMH leaf extract concentration. Control slides showed the absence of Xoo dead cells.


2009 ◽  
Vol 75 (21) ◽  
pp. 6850-6855 ◽  
Author(s):  
Titik Nuryastuti ◽  
Henny C. van der Mei ◽  
Henk J. Busscher ◽  
Susi Iravati ◽  
Abu T. Aman ◽  
...  

ABSTRACT Staphylococcus epidermidis is notorious for its biofilm formation on medical devices, and novel approaches to prevent and kill S. epidermidis biofilms are desired. In this study, the effect of cinnamon oil on planktonic and biofilm cultures of clinical S. epidermidis isolates was evaluated. Initially, susceptibility to cinnamon oil in planktonic cultures was compared to the commonly used antimicrobial agents chlorhexidine, triclosan, and gentamicin. The MIC of cinnamon oil, defined as the lowest concentration able to inhibit visible microbial growth, and the minimal bactericidal concentration, the lowest concentration required to kill 99.9% of the bacteria, were determined using the broth microdilution method and plating on agar. A checkerboard assay was used to evaluate the possible synergy between cinnamon oil and the other antimicrobial agents. The effect of cinnamon oil on biofilm growth was studied in 96-well plates and with confocal laser-scanning microscopy (CLSM). Biofilm susceptibility was determined using a metabolic 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Real-time PCR analysis was performed to determine the effect of sub-MIC concentrations of cinnamon oil on expression of the biofilm-related gene, icaA. Cinnamon oil showed antimicrobial activity against both planktonic and biofilm cultures of clinical S. epidermidis strains. There was only a small difference between planktonic and biofilm MICs, ranging from 0.5 to 1% and 1 to 2%, respectively. CLSM images indicated that cinnamon oil is able to detach and kill existing biofilms. Thus, cinnamon oil is an effective antimicrobial agent to combat S. epidermidis biofilms.


2018 ◽  
Vol 82 (1) ◽  
pp. 65-77 ◽  
Author(s):  
MOHAMED A. ALY ◽  
ERIK REIMHULT ◽  
WOLFGANG KNEIFEL ◽  
KONRAD J. DOMIG

ABSTRACT Cronobacter spp. are opportunistic human pathogens that cause serious diseases in neonates and immunocompromised people. Owing to their biofilm formation on various surfaces, both their detection and their removal from production plants constitute a major challenge. In this study, food samples were randomly collected in Austria and examined for the presence of Cronobacter spp. Presumptive isolates were identified by a polyphasic approach. Five percent of the samples were positive for C. sakazakii and 2.4% for C. dublinensis. Individual growth of the isolates was characterized based on lag time, growth rate, and generation time. During an incubation period of 6 to 72 h, biofilm formation of 11 selected isolates was quantified under model conditions by a crystal violet staining assay with 96-well plates with different carbon sources (lactose, glucose, maltose, sucrose, and sodium acetate) and NaCl levels and under variable temperature and pH conditions. Biofilm formation was more pronounced at lactose concentrations between 0.25 and 3% compared with 5% lactose, which lead to thinner layers. C. sakazakii isolate C7, isolated from infant milk powder, was the strongest biofilm producer at 10 mM Mg2+ and 5 mM Mn2+, 0.5% sodium acetate, at pH levels between 7 and 9 at 37°C for 24 h. C. sakazakii strain C6 isolated from a plant air filter was identified as a moderate biofilm former and C. sakazakii strain DSM 4485, a clinical isolate, as a weak biofilm former. Based on PCR detection, genes bcsA, bcsB, and bcsG encoding for cellulose could be identified as markers for biofilm formation. Isolates carrying bcsA and bcsB showed significantly stronger biofilm formation than isolates without these genes (P < 0.05), in strong correlation with the results obtained in the crystal violet assay. Further investigations using confocal laser scanning microscopy revealed that extracellular polymeric substances and glycocalyx secretions were the dominating components of the biofilms and that the viable fraction of bacteria in the biofilm decreased over time.


2015 ◽  
Vol 1130 ◽  
pp. 127-130 ◽  
Author(s):  
Rui Yong Zhang ◽  
Yu Tong Zhang ◽  
Thomas R. Neu ◽  
Qian Li ◽  
Sören Bellenberg ◽  
...  

This study focused on colonization and biofilm formation of a new crenarchaeoteAcidianussp. DSM 29099 on pyrite and chalcopyrite. Confocal laser scanning microscopy (CLSM) in combination with several fluorescent stains was applied to examine spatial distribution of cells and biofilms, as well as extracellular polymeric substances (EPS) production on the substrates. Around 60% and 35% of the inoculum adhered to pyrite and chalcopyrite within 2 h, respectively. Cells ofAcidianussp. DSM 29099 were heterogeneously distributed on both pyrite and chalcopyrite surfaces, while large mineral surfaces remained uncolonized. Biofilm cells on pyrite were often found to be embeded in EPS. EPS residues like mannose and glucose were possibly involved in intial attachment to pyrite. A mature biofilm on pyrite was developed after 2-4 days of incubation.


2020 ◽  
Author(s):  
Laura Kuschmierz ◽  
Martin Meyer ◽  
Benjamin Meyer ◽  
Sonja-Verena Albers ◽  
Christopher Bräsen ◽  
...  

<p>Archaea, representatives of the third domain of life, are often referred to as “extremophiles” since most of the cultivable species are adapted to extreme environments [1]. However, environmental cultivation-independent approaches (metagenomics) revealed a wide distribution of Archaea in moderate habitats suggesting a major role in geochemical processes. Similar to Bacteria, also Archaea are believed to exist predominantly in the biofilm mode, but knowledge about archaeal biofilm formation and structure, extracellular polymeric substance (EPS) composition and synthesis is scarce [2].</p> <p><em>Sulfolobus acidocaldarius</em> is a thermoacidophilic, aerobic Crenarchaeon (78°C and pH 2-3) that was isolated from acid hot springs [3]. The organism is easy to cultivate under laboratory conditions and a genetic system is established. In this study, we investigate <em>S. acidocaldarius</em> biofilms with a special focus on synthesis and transport of exopolysaccharides (PS). PS constitute a major EPS component beside proteins and eDNA, suggesting an important role in <em>Sulfolobus</em> biofilms, and changes in PS composition were observed in response to environmental stress [4]. A gene cluster encoding several glycosyltransferases (GTs) as well as membrane proteins (MPs), likely involved in exopolysaccharide synthesis, was identified in <em>S. acidocaldarius</em>. Several deletion mutants have been constructed lacking certain GT and MP encoding genes from the PS gene cluster. A combination of methods including the quantification of biofilm formation, isolation and quantification of EPS components, visualization of biofilm and PS structures via confocal laser scanning microscopy as well as molecular and biochemical techniques have been applied to compare biofilm characteristics of wildtype and mutant strains. First insight into the function of GTs and MPs will be presented and a model of PS synthesis and export will be proposed.</p> <p>[1] Schocke et al. (2019).<em> Curr. Opin. in Biotechnol.</em> 59, 71-77.</p> <p>[2] van Wolferen et al. (2018). <em>Nature Rev. Microbiol.</em> 16(11), 699-713.</p> <p>[3] Brock et al. (1972). <em>Arch. Mikrobiol.</em> 84, 54-68.</p> <p>[4] Jachlewski et al. (2015). <em>Front. Bioeng. Biotechnol.</em> 3, 123.</p> <p> </p>


2015 ◽  
Vol 1130 ◽  
pp. 79-82 ◽  
Author(s):  
Christian Thyssen ◽  
David Holuscha ◽  
Jens Kuhn ◽  
Friederike Walter ◽  
Wolfram Fürbeth ◽  
...  

Bioleaching and biocorrosion are based on similar biochemical processes. Microbe-surface interaction, biofilm formation and concomitant extracellular polymeric substance (EPS) production gained increasing interest in the past decades. Nowadays it is generally accepted that biofilm formation and an accompanying formation of manganese oxides by manganese oxidizing bacteria such as Leptothrix spp. account for one type of pitting corrosion of stainless steel (SS). However, little is known about biofilm formation, EPS composition of manganese oxidizing microorganisms and their influence on microbiologically influenced corrosion. Consequently, we studied biofilm formation of Leptothrixdiscophora, the biooxidation of manganese in biofilms on floating filters as well as biofilm formation on stainless steel and the involved corrosion processes. Cells were visualized by epifluorescence (EFM) or confocal laser scanning –microscopy (CLSM). Additionally, the influence of biofilm formation and biooxidation of manganese by L. discophora on the open circuit potential (OCP) and pitting potential (Epit) of stainless steel was measured using a 3 electrode setup. L. discophora grew well in biofilms on floating filters and on SS coupons and incorporated in both conditions Mn2+ in the form of MnO2 from the bulk phase into the biofilm. OCP measurements of actively manganese-oxidizing biofilms on stainless steel showed a significant ennoblement of ≥200 mV.


Author(s):  
Christipher T Gemmell ◽  
Valeria Parreira ◽  
Jeffrey M Farber

The aim of the present study was to investigate the ability of natural plant-derivate (flavonoid compounds) products to reduce and/or inhibit the biofilm-forming ability of Listeria monocytogenes. A collection of 500 synthetic and natural flavonoids were tested on strains of L. monocytogenes for their antimicrobial and anti-biofilm activity. L. monocytogenes biofilm inhibition by flavonoid compounds was tested on i) stainless steel coupons using crystal violet staining and ii) glass slides using confocal laser scanning microscopic (CLSM) imaging. The flavonoids were tested against a L. monocytogenes cocktail of 5 strains at a concentration of 100 µM to determine their effect on planktonic growth. A total of 17 flavonoids were chosen for further study due to their ability to significantly reduce the growth of L. monocytogenes in BHI broth, while 2 flavonoids were chosen because they actually increased growth. A lower concentration of flavonoid compounds (50 µM) was selected to investigate their effects on L. monocytogenes biofilm formation using i) stainless steel coupons to quantify biomass and ii) glass coupons to observe the biofilm architecture. The 19 flavonoids showed various levels of L.   monocytogenes growth inhibition, ranging from 2% to 100%, as compared to the respective positive and negative controls on stainless steel, after 48 h of incubation at 22 o C. In addition, in comparison to the control, most of the 19 flavonoids significantly (p ≤ 0.05) inhibited biofilm formation, with at least one of the L. monocytogenes strains or at one of the tested temperatures. In fact, when grown in BHI broth with 50 µM of the 19 selected flavonoid compounds for 48 h at 22 o C, there were visible reductions in L. monocytogenes biofilm formation on the glass coupons. Overall, we found multiple flavonoid compounds to be promising anti-biofilm and antimicrobial agents against L. monocytogenes .


2004 ◽  
Vol 70 (11) ◽  
pp. 6871-6874 ◽  
Author(s):  
Arnout J. van der Borden ◽  
Hester van der Werf ◽  
Henny C. van der Mei ◽  
Henk J. Busscher

ABSTRACT Biomaterial-centered infections of orthopedic percutaneous implants are serious complications which can ultimately lead to osteomyelitis, with devastating effects on bone and surrounding tissues, especially since the biofilm mode of growth offers protection against antibiotics and since removal frequently is the only ultimate solution. Recently, it was demonstrated that as a possible pathway to prevent infections of percutaneous stainless steel implants, electric currents of 60 to 100 μA were effective at stimulating the detachment of initially adhering staphylococci from surgical stainless steel. However, initially adhering bacteria are known to adhere more reversibly than bacteria growing in the later stages of biofilm formation. Hence, the aim of this study was to examine whether a growing Staphylococcus epidermidis biofilm can be stimulated to detach from surgical stainless steel by the use of electric currents. In separate experiments, four currents, i.e., 60 and 100 μA of direct current (DC) and 60 and 100 μA of block current (50% duty cycle, 1 Hz), were applied for 360 min to stimulate the detachment of an S. epidermidis biofilm that had grown for 200 min. A 100-μA DC yielded 78% detachment, whereas a 100-μA block current under the same experimental conditions yielded only 31% detachment. The same trend was found for 60 μA, with 37% detachment for a DC and 24% for a block current. Bacteria remaining on the surface after the current application were less viable than they were prior to the current application, as demonstrated by confocal laser scanning microscopy. In conclusion, these results suggest that DCs are preferred for curing infections.


2016 ◽  
Vol 6 (01) ◽  
pp. 5218
Author(s):  
Laxmi Mohandas ◽  
Anju T. R. ◽  
Sarita G. Bhat*

An assortment of redox-active phenazine compounds like pyocyanin with their characteristic blue-green colour are synthesized by Pseudomonas aeruginosa, Gram-negative opportunistic pathogens, which are also considered one of the most commercially valuable microorganisms. In this study, pyocyanin from Pseudomonas aeruginosa BTRY1 from food sample was assessed for its antibiofilm activity by micro titer plate assay against strong biofilm producers belonging to the genera Bacillus, Staphylococcus, Brevibacterium and Micrococcus. Pyocyanin inhibited biofilm activity in very minute concentrations. This was also confirmed by Scanning Electron Microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM). Both SEM and CLSM helped to visualize the biocontrol of biofilm formation by eight pathogens. The imaging and quantification by CLSM also established the impact of pyocyanin on biofilm-biocontrol mainly in the food industry.


Sign in / Sign up

Export Citation Format

Share Document