scholarly journals Membrane Rafts: Portals for Viral Entry

2021 ◽  
Vol 12 ◽  
Author(s):  
Inés Ripa ◽  
Sabina Andreu ◽  
José Antonio López-Guerrero ◽  
Raquel Bello-Morales

Membrane rafts are dynamic, small (10–200 nm) domains enriched with cholesterol and sphingolipids that compartmentalize cellular processes. Rafts participate in roles essential to the lifecycle of different viral families including virus entry, assembly and/or budding events. Rafts seem to participate in virus attachment and recruitment to the cell surface, as well as the endocytic and non-endocytic mechanisms some viruses use to enter host cells. In this review, we will introduce the specific role of rafts in viral entry and define cellular factors implied in the choice of one entry pathway over the others. Finally, we will summarize the most relevant information about raft participation in the entry process of enveloped and non-enveloped viruses.

2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Galileo Escobedo ◽  
Gloria Soldevila ◽  
Guadalupe Ortega-Pierres ◽  
Jesús Ramsés Chávez-Ríos ◽  
Karen Nava ◽  
...  

MAP kinases (MAPK) are involved in the regulation of cellular processes such as reproduction and growth. In parasites, the role of MAPK has been scarcely studied. Here, we describe the participation of an ERK-like protein in estrogen-dependent reproduction of the helminth parasiteTaenia crassiceps. Our results show that 17β-estradiol induces a concentration-dependent increase in the bud number of in vitro cultured cysticerci. If parasites are also incubated in presence of an ERK-inhibitor, the stimulatory effect of estrogen is blocked. The expression of ERK-like mRNA and its corresponding protein was detected in the parasite. The ERK-like protein was over-expressed by all treatments. Nevertheless, a strong induction of phosphorylation of this protein was observed only in response to 17β-estradiol. Cross-contamination by host cells was discarded by flow cytometry analysis. Parasite cells expressing the ERK-like protein were exclusively located at the subtegument tissue by confocal microscopy. Finally, the ERK-like protein was separated by bidimensional electrophoresis and then sequenced, showing the conserved TEY activation motif, typical of all known ERK 1/2 proteins. Our results show that an ERK-like protein is involved in the molecular signalling during the interaction between the host andT. crassiceps, and may be considered as target for anti-helminth drugs design.


ISRN Virology ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Pei-I Chi ◽  
Hung-Jen Liu

The cell signaling plays a pivotal role in regulating cellular processes and is often manipulated by viruses as they rely on the functions offered by cells for their propagation. The first stage of their host life is to pass the genetic materials into the cell. Although some viruses can directly penetrate into cytosol, in fact, most virus entry into their host cells is through endocytosis. This machinery initiates with cell type specific cellular signaling pathways, and the signaling compounds can be proteins, lipids, and carbohydrates. The activation can be triggered in a very short time after virus binds on target cells, such as receptors. The signaling pathways involved in regulation of viral entry are wide diversity that often cross-talk between different endocytosis results. Furthermore, some viruses have the ability to use the multiple internalization pathways which leads to the regulation being even more complex. In this paper, we discuss some recent advances in our understanding of cellular pathways for virus entry, molecular signaling during virus entry, formation of endocytic vesicles, and the traffic.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1997 ◽  
Author(s):  
Romina Mancinelli ◽  
Luigi Rosa ◽  
Antimo Cutone ◽  
Maria Stefania Lepanto ◽  
Antonio Franchitto ◽  
...  

The liver is a frontline immune site specifically designed to check and detect potential pathogens from the bloodstream to maintain a general state of immune hyporesponsiveness. One of the main functions of the liver is the regulation of iron homeostasis. The liver detects changes in systemic iron requirements and can regulate its concentration. Pathological states lead to the dysregulation of iron homeostasis which, in turn, can promote infectious and inflammatory processes. In this context, hepatic viruses deviate hepatocytes’ iron metabolism in order to better replicate. Indeed, some viruses are able to alter the expression of iron-related proteins or exploit host receptors to enter inside host cells. Lactoferrin (Lf), a multifunctional iron-binding glycoprotein belonging to the innate immunity, is endowed with potent antiviral activity, mainly related to its ability to block viral entry into host cells by interacting with viral and/or cell surface receptors. Moreover, Lf can act as an iron scavenger by both direct iron-chelation or the modulation of the main iron-related proteins. In this review, the complex interplay between viral hepatitis, iron homeostasis, and inflammation as well as the role of Lf are outlined.


2018 ◽  
Vol 72 ◽  
pp. 253-263 ◽  
Author(s):  
Magdalena Bossowska-Nowicka ◽  
Felix N. Toka ◽  
Matylda Mielcarska ◽  
Lidia Szulc-Dąbrowska

Cathepsins are group of endolysosomal proteases that regulate the mechanisms of innate and adaptive immunity, including cell adhesion and migration, antigen processing and presentation and resistance to several viral infections. Some cathepsins are required for Toll-like receptor (TLR)3, TLR7 and TLR9 cleavage and the formation of functional receptors that participate in sensing viral nucleic acids. Moreover, cathepsins directly stimulate or inhibit cytokine secretion involved in the regulation of antiviral innate immune response. Recent findings underline the important role of cathepsins in the entry of filoviruses, reoviruses, retroviruses and other types of viruses into the host cell. Many enveloped viruses require the presence of cathepsins for efficient fusion with membranes of infected cells, and the inhibition of their activity results in a significant reduction of virus replication. In addition, many viruses utilize conserved cellular mechanisms, such as endocytosis or low pH within the endosome, for efficient penetration into the cell interior, disassembly of viral capsid, and other stages of productive viral replication cycle. Therefore, a better understanding of the functional role of cathepsin proteases in the pathogenesis of viral infections should lead to the development of novel therapeutics for a variety of particularly dangerous human pathogens.


2021 ◽  
Author(s):  
Chayan Bhattacharjee ◽  
Aparna Mukhopadhyay

AbstractUnderstanding the early events in viral biology holds the key to the development of preventives. In this study fluorescent Hepatitis C Virus pseudoparticles have been generated where the envelope glycoprotein has a GFP tag. Using these pseudoparticles entry assays were conducted where the entry of the pseudoparticles was tracked via confocal microscopy. Using this system, fusion of host and viral membranes is predicted to occur within 15 minutes of entry in HCV. Using cells with a knockdown for Rab1a, HCV trafficking was observed to be altered, indicating a role of Rab1a in HCV trafficking. In conclusion, this study reports the generation and use of fluorescent pseudoparticles which may be used to understand the early events of viral entry. This system may be adapted for the study of other enveloped viruses as well.HighlightsFluorescent HCV pseudoparticles have been created to study early entry events.HCV entry tracking via confocal microscopy reveals fusion within 15 minutes.Rab1a is important for HCV trafficking within the cell.


Author(s):  
Yanfei Jiang ◽  
Guy M. Genin ◽  
Srikanth Singamaneni ◽  
Elliot L. Elson

Lipid nanodomains in cell membranes are believed to play a significant role in a number of critical cellular processes (Elson, et al., 2010). These include, for example, replication processes in enveloped viruses such as bird flu and HIV and signaling mechanisms underlying pathological conditions such as cancer. Due to the potential for developing new disease treatments through the control of these membrane rafts, the biophysics underlying their formation has been the subject of intense study, much of this focused on domain formation in giant unilamellar lipid vesicles (GUVs), a simplified model system.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Donghui Zhu ◽  
Zhen Zhao

Although COVID-19 is associated with severe respiratory dysfunctions, conspicuous vascular complications and neurological manifestations have been reported worldwide. Of note, two distinctive features have been noticed in severe patients, progressive increase of inflammation and an unusual trend of hypercoagulation. Interestingly, evidence is mounting that healthy blood vessels protect children from serious effects of COVID-19, such as stroke. These findings suggest vascular complications play a key role in the progress of COVID-19, warranting an investigation to its pathophysiology and treatment strategy related to vascular cells. Cell entry of this SARS-CoV-2 virus depends on binding of the viral spike (S) proteins to cellular receptor ACE2, which could be a key target for blocking the viral entry into host cells. ACE2 is a zinc (Zn) binding metallopeptidase while Zn possesses distinct antiviral properties against many human viruses including coronaviruses. Although the mechanistic studies are lacking, Zn appears to inhibit viral protease and polymerase enzymatic processes, and physical processes such as virus attachment, cell entry, and uncoating. In fact, our data showed that ACE2 has multiple affinity binding sites for Zn. Excess bindings of ionic Zn to ACE2 led to its conformational or functional change, therefore, interfering with its ability to metabolize its substrate as well as inhibiting its binding to S protein. Computational modeling also revealed that one critical Zn binding motif is located in ACE2’s binding domain to S protein, and docking affinity of S protein to ACE2 was significantly reduced after Zn binding to this specific site. Moreover, cell and animal studies using pseudo-virus bearing CoV-2-S protein validated that significantly lower infection of vascular cells in the presence of Zn was observed. Thus, targeting vascular complications in COVID-19 may offer strong benefits including the potential therapeutic role of Zn.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tanes Sangsri ◽  
Natnaree Saiprom ◽  
Alisa Tubsuwan ◽  
Peter Monk ◽  
Lynda J. Partridge ◽  
...  

Abstract Tetraspanins are four-span transmembrane proteins of host cells that facilitate infections by many pathogens. Burkholderia pseudomallei is an intracellular bacterium and the causative agent of melioidosis, a severe disease in tropical regions. This study investigated the role of tetraspanins in B. pseudomallei infection. We used flow cytometry to determine tetraspanins CD9, CD63, and CD81 expression on A549 and J774A.1 cells. Their roles in B. pseudomallei infection were investigated in vitro using monoclonal antibodies (MAbs) and recombinant large extracellular loop (EC2) proteins to pretreat cells before infection. Knockout of CD9 and CD81 in cells was performed using CRISPR Cas9 to confirm the role of tetraspanins. Pretreatment of A549 cells with MAb against CD9 and CD9-EC2 significantly enhanced B. pseudomallei internalization, but MAb against CD81 and CD81-EC2 inhibited MNGC formation. Reduction of MNGC formation was consistently observed in J774.A1 cells pretreated with MAbs specific to CD9 and CD81 and with CD9-EC2 and CD81-EC2. Data from knockout experiments confirmed that CD9 enhanced bacterial internalization and that CD81 inhibited MNGC formation. Our data indicate that tetraspanins are host cellular factors that mediated internalization and membrane fusion during B. pseudomallei infection. Tetraspanins may be the potential therapeutic targets for melioidosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Elena Campione ◽  
Caterina Lanna ◽  
Terenzio Cosio ◽  
Luigi Rosa ◽  
Maria Pia Conte ◽  
...  

Lactoferrin (Lf) is a cationic glycoprotein synthetized by exocrine glands and is present in all human secretions. It is also secreted by neutrophils in infection and inflammation sites. This glycoprotein possesses antimicrobial activity due to its capability to chelate two ferric ions per molecule, as well as to interact with bacterial and viral anionic surface components. The cationic features of Lf bind to cells, protecting the host from bacterial and viral injuries. Its anti-inflammatory activity is mediated by the ability to enter inside the nucleus of host cells, thus inhibiting the synthesis of proinflammatory cytokine genes. In particular, Lf down-regulates the synthesis of IL-6, which is involved in iron homeostasis disorders and leads to intracellular iron overload, favoring viral replication and infection. The well-known antiviral activity of Lf has been demonstrated against DNA, RNA, and enveloped and naked viruses and, therefore, Lf could be efficient in counteracting also SARS-CoV-2 infection. For this purpose, we performed in vitro assays, proving that Lf exerts an antiviral activity against SARS-COV-2 through direct attachment to both SARS-CoV-2 and cell surface components. This activity varied according to concentration (100/500 μg/ml), multiplicity of infection (0.1/0.01), and cell type (Vero E6/Caco-2 cells). Interestingly, the in silico results strongly supported the hypothesis of a direct recognition between Lf and the spike S glycoprotein, which can thus hinder viral entry into the cells. These in vitro observations led us to speculate a potential supplementary role of Lf in the management of COVID-19 patients.


Author(s):  
Nazaret Peña-Gil ◽  
Cristina Santiso-Bellón ◽  
Roberto Gozalbo-Rovira ◽  
Javier Buesa ◽  
Vicente Monedero ◽  
...  

Rotavirus (RV) and norovirus (NoV) are the leading cause of acute gastroenteritis (AGE) worldwide. Several studies have demonstrated that histo-blood group antigens (HBGAs) have a role in NoV and RV infections, since their presence on the gut epithelial surfaces is essential for the susceptibility to many NoV and RV genotypes. Polymorphisms in genes that code for enzymes required for HBGAs synthesis lead to secretor or non-secretor and Lewis positive and Lewis negative individuals. While secretor individuals appear to be more susceptible to RV infections, regarding NoVs infections there are too many discrepancies that prevent drawing conclusions. A second factor that influences enteric viral infections is the gut microbiota of the host. In vitro and animal studies have determined that the gut microbiota limits, but in some cases enhances, enteric viral infection. The ways microbiota can enhance NoV or RV infection include virion stabilization and promotion of virus attachment to host cells, whereas experiments with microbiota-depleted and germ-free animals point to immunoregulation as the mechanism by which the microbiota restricts infection. Human trials with live, attenuated RV vaccines and analysis of the microbiota in responders and non-responders individuals also allowed the identification of bacterial taxa linked to vaccine efficacy. As more information is gained on the complex relationships that are established between the host (glycobiology and immune system), the gut microbiota and the intestinal viruses, new avenues will be open for the development of novel anti-NoV and anti-RV therapies.


Sign in / Sign up

Export Citation Format

Share Document