scholarly journals Codon Usage and Adenovirus Fitness: Implications for Vaccine Development

2021 ◽  
Vol 12 ◽  
Author(s):  
Judit Giménez-Roig ◽  
Estela Núñez-Manchón ◽  
Ramon Alemany ◽  
Eneko Villanueva ◽  
Cristina Fillat

Vaccination is the most effective method to date to prevent viral diseases. It intends to mimic a naturally occurring infection while avoiding the disease, exposing our bodies to viral antigens to trigger an immune response that will protect us from future infections. Among different strategies for vaccine development, recombinant vaccines are one of the most efficient ones. Recombinant vaccines use safe viral vectors as vehicles and incorporate a transgenic antigen of the pathogen against which we intend to generate an immune response. These vaccines can be based on replication-deficient viruses or replication-competent viruses. While the most effective strategy involves replication-competent viruses, they must be attenuated to prevent any health hazard while guaranteeing a strong humoral and cellular immune response. Several attenuation strategies for adenoviral-based vaccine development have been contemplated over time. In this paper, we will review them and discuss novel approaches based on the principle that protein synthesis from individual genes can be modulated by codon usage bias manipulation. We will summarize vaccine approaches that consider recoding of viral proteins to produce adenoviral attenuation and recoding of the transgene antigens for both viral attenuation and efficient viral epitope expression.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alexandra J. Spencer ◽  
Paul F. McKay ◽  
Sandra Belij-Rammerstorfer ◽  
Marta Ulaszewska ◽  
Cameron D. Bissett ◽  
...  

AbstractSeveral vaccines have demonstrated efficacy against SARS-CoV-2 mediated disease, yet there is limited data on the immune response induced by heterologous vaccination regimens using alternate vaccine modalities. Here, we present a detailed description of the immune response, in mice, following vaccination with a self-amplifying RNA (saRNA) vaccine and an adenoviral vectored vaccine (ChAdOx1 nCoV-19/AZD1222) against SARS-CoV-2. We demonstrate that antibody responses are higher in two-dose heterologous vaccination regimens than single-dose regimens. Neutralising titres after heterologous prime-boost were at least comparable or higher than the titres measured after homologous prime boost vaccination with viral vectors. Importantly, the cellular immune response after a heterologous regimen is dominated by cytotoxic T cells and Th1+ CD4 T cells, which is superior to the response induced in homologous vaccination regimens in mice. These results underpin the need for clinical trials to investigate the immunogenicity of heterologous regimens with alternate vaccine technologies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Céline Vaure ◽  
Véronique Grégoire-Barou ◽  
Virginie Courtois ◽  
Emilie Chautard ◽  
Cyril Dégletagne ◽  
...  

Evaluation of the short-term and long-term immunological responses in a preclinical model that simulates the targeted age population with a relevant vaccination schedule is essential for human vaccine development. A Göttingen minipig model was assessed, using pertussis vaccines, to demonstrate that vaccine antigen-specific humoral and cellular responses, including IgG titers, functional antibodies, Th polarization and memory B cells can be assessed in a longitudinal study. A vaccination schedule of priming with a whole cell (DTwP) or an acellular (DTaP) pertussis vaccine was applied in neonatal and infant minipigs followed by boosting with a Tdap acellular vaccine. Single cell RNAsequencing was used to explore the long-term maintenance of immune memory cells and their functionality for the first time in this animal model. DTaP but not DTwP vaccination induced pertussis toxin (PT) neutralizing antibodies. The cellular immune response was also characterized by a distinct Th polarization, with a Th-2-biased response for DTaP and a Th-1/Th-17-biased response for DTwP. No difference in the maintenance of pertussis-specific memory B cells was observed in DTaP- or DTwP-primed animals 6 months post Tdap boost. However, an increase in pertussis-specific T cells was still observed in DTaP primed minipigs, together with up-regulation of genes involved in antigen presentation and interferon pathways. Overall, the minipig model reproduced the humoral and cellular immune responses induced in humans by DTwP vs. DTaP priming, followed by Tdap boosting. Our data suggest that the Göttingen minipig is an attractive preclinical model to predict the long-term immunogenicity of human vaccines against Bordetella pertussis and potentially also vaccines against other pathogens.


2020 ◽  
Author(s):  
Shang-Jui Tsai ◽  
Chenxu Guo ◽  
Nadia A. Atai ◽  
Stephen J. Gould

AbstractBackgroundIn less than a year from its zoonotic entry into the human population, SARS-CoV-2 has infected more than 45 million people, caused 1.2 million deaths, and induced widespread societal disruption. Leading SARS-CoV-2 vaccine candidates immunize with the viral spike protein delivered on viral vectors, encoded by injected mRNAs, or as purified protein. Here we describe a different approach to SARS-CoV-2 vaccine development that uses exosomes to deliver mRNAs that encode antigens from multiple SARS-CoV-2 structural proteins.ApproachExosomes were purified and loaded with mRNAs designed to express (i) an artificial fusion protein, LSNME, that contains portions of the viral spike, nucleocapsid, membrane, and envelope proteins, and (ii) a functional form of spike. The resulting combinatorial vaccine, LSNME/SW1, was injected into thirteen weeks-old, male C57BL/6J mice, followed by interrogation of humoral and cellular immune responses to the SARS-CoV-2 nucleocapsid and spike proteins, as well as hematological and histological analysis to interrogate animals for possible adverse effects.ResultsImmunized mice developed CD4+, and CD8+ T-cell reactivities that respond to both the SARS-CoV-2 nucelocapsid protein and the SARS-CoV-2 spike protein. These responses were apparent nearly two months after the conclusion of vaccination, as expected for a durable response to vaccination. In addition, the spike-reactive CD4+ T-cells response was associated with elevated expression of interferon gamma, indicative of a Th1 response, and a lesser induction of interleukin 4, a Th2-associated cytokine. Vaccinated mice showed no sign of altered growth, injection-site hypersensitivity, change in white blood cell profiles, or alterations in organ morphology. Consistent with these results, we also detected moderate but sustained anti-nucleocapsid and anti-spike antibodies in the plasma of vaccinated animals.ConclusionTaken together, these results validate the use of exosomes for delivering functional mRNAs into target cells in vitro and in vivo, and more specifically, establish that the LSNME/SW1 vaccine induced broad immunity to multiple SARS-CoV-2 proteins.


2012 ◽  
Vol 2012 ◽  
pp. 1-7
Author(s):  
Dexing Ma ◽  
Chunli Ma ◽  
Mingyang Gao ◽  
Guangxing Li ◽  
Ze Niu ◽  
...  

We previously reported that the chimeric DNA vaccine pcDNA-3-1E-linker-mChIL-15, fused through linkingEimeria acervulina3-1E encoding gene and mature chicken IL-15 (mChIL-15) gene with four flexible amino acid SPGS, could significantly offer protection against homologous challenge. In the present study, the induction of cellular immune response induced by the chimeric DNA vaccine pcDNA-3-1E-linker-mChIL-15 was investigated. Spleen lymphocyte subpopulations were characterized by flow cytometric analysis. The spleen lymphocyte proliferation assays were measured by 3-[4,5-dimethylthiazol-2-y1]-2,5-diphenyltetrazolium bromide (MTT) method. The mRNA profiles of ChIL-2 and ChIFN-γ in spleen were characterized by means of real-time PCR. Chickens immunized with pcDNA-3-1E-linker-mChIL-15 exhibited significant upregulated level of ChIL-2 and ChIFN-γ transcripts in spleen following two immunizations compared with chickens in other groups (P<0.01). In comparison with pcDNA3.1-immunized and control groups, lymphocyte proliferation, percentage of CD8α+cell, and levels of ChIL-2 and ChIFN-γ transcripts in the group immunized with pcDNA-3-1E-linker-mChIL-15 were significantly increased on day 6 following challenge (P<0.05,P<0.01, andP<0.01, resp.). Our data suggested that the fusion antigen 3-1E-linker-mChIL-15 could be a potential candidate forE. acervulinavaccine development.


Pathogens ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 739
Author(s):  
Emilia Sinderewicz ◽  
Wioleta Czelejewska ◽  
Katarzyna Jezierska-Wozniak ◽  
Joanna Staszkiewicz-Chodor ◽  
Wojciech Maksymowicz

The global range and high fatality rate of the newest human coronavirus (HCoV) pandemic has made SARS-CoV-2 the focus of the scientific world. Next-generation sequencing of the viral genome and a phylogenetic analysis have shown the high homology of SARS-CoV-2 to other HCoVs that have led to local epidemics in the past. The experience acquired in SARS and MERS epidemics may prove useful in understanding the SARS-CoV-2 pathomechanism and lead to effective treatment and potential vaccine development. This study summarizes the immune response to SARS-CoV, MERS-CoV, and SARS-CoV-2 and focuses on T cell response, humoral immunity, and complement system activation in different stages of HCoVs infections. The study also presents the quantity and frequency of T cell responses, particularly CD4+ and CD8+; the profile of cytokine production and secretion; and its relation to T cell type, disease severity, and utility in prognostics of the course of SARS, MERS, and COVID-19 outbreaks. The role of interferons in the therapy of these infections is also discussed. Moreover, the kinetics of specific antibody production, the correlation between humoral and cellular immune response and the immunogenicity of the structural HCoVs proteins and their utility in the development of a vaccine against SARS, MERS, and COVID-19 has been updated.


2018 ◽  
Vol 92 (16) ◽  
Author(s):  
David C. Bloom ◽  
Robert K. Tran ◽  
Joyce Feller ◽  
Richard Voellmy

ABSTRACT Replication-competent controlled virus vectors were derived from the virulent herpes simplex virus 1 (HSV-1) wild-type strain 17syn+ by placing one or two replication-essential genes under the stringent control of a gene switch that is coactivated by heat and an antiprogestin. Upon activation of the gene switch, the vectors replicate in infected cells with an efficacy that approaches that of the wild-type virus from which they were derived. Essentially no replication occurs in the absence of activation. When administered to mice, localized application of a transient heat treatment in the presence of systemic antiprogestin results in efficient but limited virus replication at the site of administration. The immunogenicity of these viral vectors was tested in a mouse footpad lethal challenge model. Unactivated viral vectors—which may be regarded as equivalents of inactivated vaccines—induced detectable protection against lethality caused by wild-type virus challenge. Single activation of the viral vectors at the site of administration (rear footpads) greatly enhanced protective immune responses, and a second immunization resulted in complete protection. Once activated, vectors also induced far better neutralizing antibody and HSV-1-specific cellular immune responses than unactivated vectors. To find out whether the immunogenicity of a heterologous antigen was also enhanced in the context of efficient transient vector replication, a virus vector constitutively expressing an equine influenza virus hemagglutinin was constructed. Immunization of mice with this recombinant induced detectable antibody-mediated neutralization of equine influenza virus, as well as a hemagglutinin-specific cellular immune response. Single activation of viral replication resulted in a severalfold enhancement of these immune responses. IMPORTANCE We hypothesized that vigorous replication of a pathogen may be critical for eliciting the most potent and balanced immune response against it. Hence, attenuation/inactivation (as in conventional vaccines) should be avoided. Instead, the necessary safety should be provided by placing replication of the pathogen under stringent control and by activating time-limited replication of the pathogen strictly in an administration region in which pathology cannot develop. Immunization will then occur in the context of highly efficient pathogen replication and uncompromised safety. We found that localized activation in mice of efficient but limited replication of a replication-competent controlled herpesvirus vector resulted in a greatly enhanced immune response to the virus or an expressed heterologous antigen. This finding supports the above-mentioned hypothesis and suggests that the vectors may be promising novel agents worth exploring for the prevention/mitigation of infectious diseases for which efficient vaccination is lacking, in particular in immunocompromised patients.


1998 ◽  
Vol 72 (2) ◽  
pp. 1497-1503 ◽  
Author(s):  
Stefanie André ◽  
Brian Seed ◽  
Josef Eberle ◽  
Winfried Schraut ◽  
Andreas Bültmann ◽  
...  

ABSTRACT DNA vaccination elicits humoral and cellular immune responses and has been shown to confer protection against several viral, bacterial, and parasitic pathogens. Here we report that optimized codon usage of an injected DNA sequence considerably increases both humoral and cellular immune responses. We recently generated a synthetic human immunodeficiency virus type 1 gp120 sequence in which most wild-type codons were replaced with codons from highly expressed human genes (syngp120). In vitro expression of syngp120 is considerably increased in comparison to that of the respective wild-type sequence. In BALB/c mice, DNA immunization with syngp120 resulted in significantly increased antibody titers and cytotoxic T-lymphocyte reactivity, suggesting a direct correlation between expression levels and the immune response. Moreover, syngp120 is characterized byrev-independent expression and a low risk of recombination with viral sequences. Thus, synthetic genes with optimized codon usage represent a novel strategy to increase the efficacy and safety of DNA vaccination.


Viruses ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 918 ◽  
Author(s):  
Yan ◽  
Banadyga ◽  
Zhao ◽  
Zhao ◽  
Schiffman ◽  
...  

Peste des petits ruminants is a highly contagious acute or subacute disease of small ruminants caused by the peste des petits ruminants virus (PPRV), and it is responsible for significant economic losses in animal husbandry. Vaccination represents the most effective means of controlling this disease, with virus-like particle (VLP) vaccines offering promising vaccine candidates. In this study, a PPRV VLP-based vaccine was developed using a baculovirus expression system, allowing for the simultaneous expression of the PPRV matrix (M), hemagglutinin (H), fusion (F) and nucleocapsid (N) proteins in insect cells. Immunization of mice and goats with PPRV VLPs elicited a robust neutralization response and a potent cellular immune response. Mouse studies demonstrated that VLPs induced a more robust IFN-γ response in CD4+ and CD8+ T cells than PPRV Nigeria 75/1 and recruited and/or activated more B cells and dendritic cells in inguinal lymph nodes. In addition, PPRV VLPs induced a strong Th1 class response in mice, as indicated by a high IgG2a to IgG1 ratio. Goat studies demonstrated that PPRV VLPs can induce the production of antibodies specific for F and H proteins and can also stimulate the production of virus neutralizing antibodies to the same magnitude as the PPRV Nigeria 75/1 vaccine. Higher amounts of IFN-γ in VLP-immunized animal serum suggested that VLPs also elicited a cellular immune response in goats. These results demonstrated that VLPs elicit a potent immune response against PPRV infection in small ruminants, making PPRV VLPs a potential candidate for PPRV vaccine development.


Author(s):  
Wilbert Bouwman ◽  
Wim Verhaegh ◽  
Laurent Holtzer ◽  
Anja van de Stolpe

AbstractThe host immune response determines the clinical course of a viral infection, for example in case of COVID-19 infection. The effectiveness of vaccination also depends on the induced immune response. Currently there is no method to measure the cellular immune response in blood samples. The functional activity of cells of innate and adaptive immune system is determined by coordinated activity of signaling pathways, especially the JAK-STAT pathways. Using a previously described approach we developed mRNA-based tests to measure activity of these signaling pathways, and show that they can be used to measure in a quantitative manner the cellular innate and adaptive immune response to a viral infection or vaccine in whole blood, PBMC, and specific immune cell type samples. Pathway activity level and range in healthy individuals was established, enabling interpretation of a pathway activity score on a patient sample without the need for a reference sample. Evidence is presented that the pathway activity analysis may also be useful for in vitro vaccine development and assessment of vaccine immunogenicity. Other envisioned applications lie in development of immunomodulatory drugs and drug response prediction and monitoring. Tests are expected to be of value in the COVID-19 crisis. In addition to the described Affymetrix microarray-based pathway tests for measuring host immune response, qPCR-based versions are in development; the latter can in principle be performed within three hours in routine hospital labs.


Sign in / Sign up

Export Citation Format

Share Document