scholarly journals Effects of Microbial Inoculation and Storage Length on Fermentation Profile and Nutrient Composition of Whole-Plant Sorghum Silage of Different Varieties

2021 ◽  
Vol 12 ◽  
Author(s):  
E. Cole Diepersloot ◽  
Matheus R. Pupo ◽  
Lucas G. Ghizzi ◽  
Jessica O. Gusmão ◽  
Celso Heinzen ◽  
...  

This study aimed to assess the effects of a heterofermentative microbial inoculant and storage length on fermentation profile, aerobic stability, and nutrient composition in whole-plant sorghum silage (WPSS) from different varieties. Experiment 1, a completely randomized design with a 2 × 3 factorial treatment arrangement, evaluated microbial inoculation [CON (50 mL distilled water) or LBLD (Lactobacillus plantarum DSM 21762, L. buchneri DSM 12856, and L. diolivorans DSM 32074; 300,000 CFU/g of fresh forage)] and storage length (14, 28, or 56 d) in forage WPSS. The LBLD silage had lower pH compared to CON, and greater concentrations of succinic acid, ethanol, 1,2-propanediol (1,2-PD), 1-propanol, 2,3-butanediol and total acids. After 56 d, lactic acid concentration was greater for CON, while acetic acid and aerobic stability were greater in LBLD silage. Experiment 2, a completely randomized design with a 2 × 3 factorial treatment arrangement, evaluated effects of microbial inoculation (same as experiment 1) and storage length (14, 28, or 56 d) in WPSS of three varieties [forage sorghum (Mojo Seed, OPAL, Hereford, TX), sorghum-sudangrass (Dyna-gro Seed, Fullgraze II, Loveland, CO, United States), or sweet sorghum (MAFES Foundation Seed Stocks, Dale, MS State, MS)]. The LBLD forage sorghum had greater acetic acid and 1,2-PD concentrations at 56 d and 28 d, respectively, but lower concentrations of propionic acid at 56 d and butyric acid at 14 and 28 d. Additionally, WSC concentration was greater for CON than LBLD at 28 d. Furthermore, CON sweet sorghum had greater lactic acid, propionic acid, and butyric acid concentrations. However, greater acetic acid and 1,2-PD were observed for LBLD sweet sorghum. The CON sweet sorghum had greater concentration of WSC and yeast counts. The CON sorghum sudangrass had greater lactic and butyric acid concentrations than LBLD at 14 d, but lower acetic acid and 1,2-PD concentrations at 56 d. Yeast counts were greater for CON than LBLD sorghum sudangrass silage. Overall, results indicate inoculation of WPSS with Lactobacillus plantarum DSM 21762, L. buchneri DSM 12856, and L. diolivorans DSM 32074 improves heterofermentative co-fermentation allowing the accumulation of acetic acid concentration and increasing antifungal capacities and aerobic stability of WPSS.

2018 ◽  
Vol 39 (1) ◽  
pp. 253
Author(s):  
Marcos Rogério Oliveira ◽  
Antônio Vinícius Iank Bueno ◽  
Guilherme Fernando Mattos Leão ◽  
Mikael Neumann ◽  
Clóves Cabreira Jobim

We aimed to evaluate nutritional quality, fermentation profile, aerobic stability, and dry matter losses in corn (Zea mays) and wheat (Triticum aestivum 'BRS Umbu') silages. Treatments included uninoculated and inoculated (Lactobacillus plantarum and Pediococcus acidilactici, 1.0 × 105 UFC g-1) wheat silage, corn silage from a conventional hybrid and a transgenic hybrid. Nutritional quality and fermentation profile variables were tested in a completely randomized design. Means were compared using Tukey’s test at 5% significance. An aerobic stability trial was conducted in a factorial design with two silages (wheat × inoculated wheat; conventional hybrid corn × transgenic hybrid corn) and two temperatures (ambient temperature × controlled temperature at 24°C). Data were submitted to ANOVA and means were analyzed by the F test at 5% probability. Inoculation of wheat silage increased dry matter, organic matter, and total carbohydrates, but reduced crude protein by a dilution effect. Regarding the fermentation profile, inoculation reduced acetic acid and butyric acid content, whereas it increased propionic acid in wheat silage. Bt corn hybrid silage showed higher dry matter and lower neutral detergent fiber, whereas transgenic corn silage showed lower content of acetic acid, propionic acid, alcohol, and ammonia. Conversely, Bt hybrid silage showed higher butyric acid. Transgenic corn silage showed higher temperature than the conventional hybrid silage during aerobic exposure. Inoculated wheat silage experienced larger deterioration and dry matter losses during the aerobic stability trial. Temperature control worsened aerobic stability in all treatments, increasing dry matter losses and heating.


2018 ◽  
Vol 156 (9) ◽  
pp. 1123-1129 ◽  
Author(s):  
T. A. Del Valle ◽  
G. Antonio ◽  
T. F. Zenatti ◽  
M. Campana ◽  
E. M. C. Zilio ◽  
...  

AbstractThe current study aims to evaluate the effects of increasing levels of xylanase enzyme (XYL) on sugarcane silage fermentation, fermentative losses, chemical composition, dry matter (DM), neutral detergent fibre (NDF) degradation and aerobic stability. A completely randomized design trial was performed with five treatments and 50 experimental silos. Treatments were: 0, 100, 200, 300 and 400 mg of XYL per kg of DM. XYL contained 10 000 U/g. There was a quadratic effect of XYL on silage pH and acetic acid concentration: lower pH and higher acetic acid concentrations were found at intermediary levels of the enzyme. XYL decreased lactic acid concentration linearly. Furthermore, the enzyme had a quadratic effect on effluent and total losses, with higher losses at intermediary XYL levels. There was a quadratic effect of XYL on organic matter (OM), non-fibre carbohydrates (NFC) and crude protein (CP) content. In addition, a quadratic effect of XYL was observed on NDF content and degradation. Intermediary levels of XYL showed higher concentration of OM and NFC. The addition of XYL had no effect on silage temperature and pH after aerobic exposure. Thus, intermediate levels of XYL increased acetic acid and decreased silage pH. Besides positive effects on silage composition, intermediary XYL levels decreased NDF degradation.


Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 95
Author(s):  
Mariele Nascimento Agarussi ◽  
Odilon Pereira ◽  
Leandro da Silva ◽  
Vanessa da Silva ◽  
Rosinea de Paula ◽  
...  

The aerobic deterioration of silage nutrients is inevitable in tropical countries, causing negative consequences in animal production systems. Aiming to minimize the losses, the effects of Lactobacillus buchneri strains on fermentation profile and aerobic stability of corn silages were evaluated. The experiment was conducted under a completely randomized design with 13 treatments and three replicates. The treatments were noninoculated, commercial L. buchneri (CI), and 11 wild strains of L. buchneri: LB-56.1, LB-56.2, LB-56.4, LB-56.7, LB-56.8, LB-56.9, LB-56.21, LB-56.22, LB-56.25, LB-56.26, and LB-56.27. The treatments could be divided into three different groups according to silage pH and acetic acid concentration. Silages inoculated with LB-56.1, LB-56.4, and LB-56.9 presented higher pH, whereas intermediate values were observed for LB-56.2, LB-56.7, and LB-56.8. The highest acetic acid production was observed for LB-56.1 and LB-56.7. On the other hand, lowest concentrations were found for CI, LB-56.22, LB-56.25, LB-56.26, and LB-56.27. Higher amounts of NH3–N were observed for LB-56.8, LB-56.21, LB-56.22, and LB-56.27 silages than others. Silage inoculation with CI, LB-56.1, LB-56.2, LB-56.4, LB-56.8, LB-56.9, and LB-56.25 strains had higher aerobic stability than others (59.7 vs. 41.2 h). The L. buchneri strains LB-56.1, LB-56.2, LB-56.4, LB-56.8, LB-56.9, and LB-56.25 provided potential features to improve the aerobic stability of corn silage.


2020 ◽  
Vol 98 (11) ◽  
Author(s):  
Ana L M Gomes ◽  
Antonio V I Bueno ◽  
Fernando A Jacovaci ◽  
Guilherme Donadel ◽  
Luiz F Ferraretto ◽  
...  

Abstract Our objective was to examine the effects of processing, moisture, and anaerobic storage length of reconstituted corn grain (RCG) on the fermentation profile, geometric mean particle size (GMPS), and ruminal dry matter disappearance (DMD). Dry corn kernels were ground (hammer mill, 5-mm screen) or rolled, then rehydrated to 30%, 35%, or 40% moisture, and stored for 0, 14, 30, 60, 90, 120, or 180 d in laboratory silos. Rolled corn had an increased GMPS compared with ground corn (2.24 and 1.13 mm, respectively, at ensiling). However, there was a trend for an interaction between processing and moisture concentration to affect particle size, with GMPS increasing with increased moisture concentration, especially in ground corn. Longer storage periods also slightly increased GMPS. Processing, moisture, and storage length interacted to affect the fermentation pattern (two- or three-way interactions). Overall, pH decreased, whereas lactic acid, acetic acid, ethanol, and NH3-N increased with storage length. RCG with 30% moisture had less lactic acid than corn with 35% and 40% moisture, indicating that fermentation might have been curtailed and also due to the clostridial fermentation that converts lactic acid to butyric acid. Ensiling reconstituted ground corn with 30% of moisture led to greater concentrations of ethanol and butyric acid, resulting in greater DM loss than grain rehydrated to 35% or 40% of moisture. Ammonia-N and in situ ruminal DMD were highest for reconstituted ground corn with 35% or 40% of moisture, mainly after 60 d of storage. Therefore, longer storage periods and greater moisture contents did not offset the negative effect of greater particle size on the in situ ruminal DMD of rolled RCG. Nonetheless, RCG should be ensiled with more than 30% moisture and stored for at least 2 mo to improve the ruminal DMD and reduce the formation of ethanol and butyric acid.


2020 ◽  
Vol 158 (5) ◽  
pp. 438-446
Author(s):  
E. F. S. Faria ◽  
T. C. da Silva ◽  
D. dos S. Pina ◽  
E. M. Santos ◽  
M. L. G. M. L. de Araújo ◽  
...  

AbstractThis study aimed to examine the effects of re-ensiling time and Lactobacillus buchneri on the fermentation profile, chemical composition and aerobic stability of sugarcane silages. The experiment was set up as a repeated measure design consisting of four air-exposure periods (EP)(0, 6, 12, and 24 h) microbial additive (A) (L. buchneri; or lack of there), with five replicates. Sugarcane was ground through a stationary forage chopper and ensiled in four plastic drums of 200-L capacity. After 210 days of storage, the drums were opened and half of the silage mass was treated with L. buchneri at the concentration of 105 cfu/g of forage. Subsequently, the silages were divided into stacks. The re-ensiling process was started immediately, at 0, 6, 12 and 24-hour intervals, by transferring the material to PVC mini-silos. Silos were opened after 120 days of re-ensiling. The use of L. buchneri reduced butyrate concentration but did not change ethanol or acetic acid concentrations and aerobic stability. An interaction effect between L. buchneri and re-ensiling time was observed for dry matter (DM) losses and composition. Lactobacillus buchneri is not effective in improving aerobic stability in re-ensiled sugarcane silages. However, less DM is lost in silages treated with L. buchneri and exposed to air for 24 h. Re-ensiling sugar cane in up to 24 h of exposure to air does not change final product quality.


2018 ◽  
Vol 14 (2) ◽  
pp. 92
Author(s):  
Rizka Novi Sesanti ◽  
Hilman Hidayat ◽  
Sismanto Sismanto

This research is about application IBA and NAA with some cutting materials of “Madu Deli Hijau” water apple using NFT hydroponic system was aim to study the growth of water apple’s cuttings was treated by IBA and NAA 500 ppm and study the best kind of cutting materials of water apple that can growth the most.  This research was conducted using completely randomized design in two factors.  The first was consisted of 7 treatments; control (without Auxin), IBA 500 ppm, and NAA 500 ppm. The second was consisted of 4 treatments; woody branch (hardwood), semi woody (semi hardwood), and soft branch, softwood, and shoots. The results showed that the added auxin in the form of IBA and NAA 500 ppm can increase the success of madu deli hijau water apple cuttings and the cuttings from the shoots are the best for the success of madu deli hijau water apple in NFT hydroponic system.


2020 ◽  
Vol 158 (4) ◽  
pp. 304-312
Author(s):  
A. G. S. Matias ◽  
G. G. L. Araujo ◽  
F. S. Campos ◽  
S. A. Moraes ◽  
G. C. Gois ◽  
...  

AbstractThis study aimed to evaluate the fermentation profile and nutritional quality of silages composed of cactus pear and maniçoba. Two experiments were performed: the first evaluated the fermentation characteristics, chemical composition and determined the organic acids in cactus pear silages with the inclusion of five levels of maniçoba (0, 25, 50, 75 and 100%) in six opening times (1, 7, 15, 30, 60 and 90 days). The second experiment determined the nutrient intake, digestibility, water balance and nitrogen balance in Canindé goats fed diets based on cactus pear silage with the inclusion of four levels of maniçoba (25, 50, 75 and 100%), with six animals per treatment. The increase in maniçoba levels in cactus pear silage provided a linear increase in the butyric acid, dry matter (DM), ether extract, crude protein, neutral detergent fibre, acid detergent fibre, lignin, cellulose, hemicellulose, water intake via drinking fountain and metabolic water, and reduced the pH, lactic acid, acetic acid, mineral matter, total carbohydrates, non-fibrous carbohydrates, water intake via food, total water intake, water excreted in the faeces, water excreted in the urine, total water excretion and water balance. Quadratic behaviour was observed for N-NH3, DM recovery and propionic acid, with an increase in maniçoba levels in cactus pear silages. Regarding the different opening times, there was a significant effect in pH, N-NH3, acetic acid, lactic acid and butyric acid (P < 0.050). The inclusion of maniçoba in cactus pear silage improved the fermentation characteristics and nutritional quality to be used in diets for goats.


Author(s):  
Tiago Antonio Del Valle ◽  
Giovani Antonio ◽  
Elissandra Maiara de Castro Zilio ◽  
Mauro Sérgio da Silva Dias ◽  
Jefferson Rodrigues Gandra ◽  
...  

This study aimed to evaluate the effects of increasing levels of chitosan (CHI) on sugarcane fermentation profile and losses, chemical composition, and in situ degradation. Treatments were: 0, 1, 2, 4, and 8 g of CHI/kg of dry matter (DM). Twenty experimental silos (PVC tubing with diameter 28 cm and height 25 cm) were used. Sand (2 kg) was placed at the bottom of each silo to evaluate effluent losses, and silos were weighed 60 d after ensiling to calculate gas losses. Samples were collected from the center of the silo mass to evaluate silage chemical composition, in situ degradation, fermentation profile, and mold and yeast count. Data were analyzed as a completely randomized design, and the treatment effect was decomposed using polynomial regression. Chitosan linearly increased acetic acid and NH3-N concentration, while yeast and mold count, and ethanol concentration decreased. Intermediary levels of CHI (from 4.47 to 6.34 g/kg DM) showed the lower values of effluent, gas, and total losses. There was a quadratic effect of CHI on the content of non-fiber carbohydrates, neutral and acid detergent, and in situ DM degradation. The lowest fiber content was observed with levels between 7.01 and 7.47 g/kg DM, whereas the highest non-fiber carbohydrate content and in situ DM degradation were found with 6.30 and 7.17 g/kg DM of CHI, respectively. Chitosan linearly increased acetic acid and NH3-N concentration, whereas it linearly reduced ethanol concentration and count of yeast and mold. Thus, intermediary levels of CHI, between 4.47 and 7.47 g/kg of DM, decrease fermentation losses and improve the nutritional value of sugarcane silage.


2003 ◽  
Vol 69 (1) ◽  
pp. 562-567 ◽  
Author(s):  
H. Danner ◽  
M. Holzer ◽  
E. Mayrhuber ◽  
R. Braun

ABSTRACT The effects of various compounds on the aerobic stability of silages were evaluated. It has been observed that inoculation of whole-crop maize with homofermentative lactic acid bacteria leads to silages which have low stability against aerobic deterioration, while inoculation with heterofermentative lactic acid bacteria, such as Lactobacillus brevis or Lactobacillus buchneri, increases stability. Acetic acid has been proven to be the sole substance responsible for the increased aerobic stability, and this acid acts as an inhibitor of spoilage organisms. Therefore, stability increases exponentially with acetic acid concentration. Only butyric acid has a similar effect. Other compounds, like lactic acid, 1,2-propanediol, and 1-propanol, have been shown to have no effect, while fructose and mannitol reduce stability.


Sign in / Sign up

Export Citation Format

Share Document