scholarly journals Disruption of the MreB Elongasome Is Overcome by Mutations in the Tricarboxylic Acid Cycle

2021 ◽  
Vol 12 ◽  
Author(s):  
Brody Barton ◽  
Addison Grinnell ◽  
Randy M. Morgenstein

The bacterial actin homolog, MreB, is highly conserved among rod-shaped bacteria and essential for growth under normal growth conditions. MreB directs the localization of cell wall synthesis and loss of MreB results in round cells and death. Using the MreB depolymerizing drug, A22, we show that changes to central metabolism through deletion of malate dehydrogenase from the tricarboxylic acid (TCA) cycle results in cells with an increased tolerance to A22. We hypothesize that deletion of malate dehydrogenase leads to the upregulation of gluconeogenesis resulting in an increase in cell wall precursors. Consistent with this idea, metabolite analysis revealed that malate dehydrogenase (mdh) deletion cells possess elevated levels of several glycolysis/gluconeogenesis compounds and the cell wall precursor, uridine diphosphate N-acetylglucosamine (UDP-NAG). In agreement with these results, the increased A22 resistance phenotype can be recapitulated through the addition of glucose to the media. Finally, we show that this increase in antibiotic tolerance is not specific to A22 but also applies to the cell wall-targeting antibiotic, mecillinam.

2021 ◽  
Author(s):  
Joy Omini ◽  
Izabela Wojciechowska ◽  
Aleksandra Skirycz ◽  
Hideaki Moriyama ◽  
Toshihiro Obata

Mitochondrial malate dehydrogenase (MDH)-citrate synthase (CS) multi-enzyme complex is a part of the Krebs tricarboxylic acid (TCA) cycle 'metabolon' which is enzyme machinery catalyzing sequential reactions without diffusion of reaction intermediates into a bulk matrix. This complex is assumed to be a dynamic structure involved in the regulation of the cycle by enhancing metabolic flux. Microscale Thermophoresis analysis of the porcine heart MDH-CS complex revealed that substrates of the MDH and CS reactions, NAD+ and acetyl-CoA, enhance complex association while products of the reactions, NADH and citrate, weaken the affinity of the complex. Oxaloacetate enhanced the interaction only when it was presented together with acetyl-CoA. Structural modeling using published CS structures suggested that the binding of these substrates can stabilize the closed format of CS which favors the MDH-CS association. Two other TCA cycle intermediates, ATP, and low pH also enhanced the association of the complex. These results suggest that dynamic formation of the MDH-CS multi-enzyme complex is modulated by metabolic factors responding to respiratory metabolism, and it may function in the feedback regulation of the cycle and adjacent metabolic pathways.


2004 ◽  
Vol 17 (12) ◽  
pp. 1318-1327 ◽  
Author(s):  
Sergiy l. Dymov ◽  
David J. J. Meek ◽  
Blaire Steven ◽  
Brian T. Driscoll

To isolate Sinorhizobium meliloti mutants deficient in malate dehydrogenase (MDH) activity, random transposon Tn5tac1 insertion mutants were screened for conditional lethal phenotypes on complex medium. Tn5tac1 has an outward-oriented isopropyl-β-D-thiogalactopyranoside (IPTG)- inducible promoter (Ptac). The insertion in strain Rm30049 was mapped to the mdh gene, which was found to lie directly upstream of the genes encoding succinyl-CoA synthetase (sucCD) and 2-oxoglutarate dehydrogenase (sucAB and lpdA). Rm30049 required IPTG for wild-type growth in complex media, and had a complex growth phenotype in minimal media with different carbon sources. The mdh∷ Tn5tac1 insertion eliminated MDH activity under all growth conditions, and activities of succinyl-CoA synthetase, 2-oxoglutarate dehydrogenase, and succinate dehydrogenase were affected by the addition of IPTG. Reverse-transcriptase polymerase chain reaction (RT-PCR) studies confirmed that expression from Ptac was induced by IPTG and leaky in its absence. Alfalfa plants inoculated with Rm30049 were chlorotic and stunted, with small white root nodules, and had shoot dry weight and percent-N content values similar to those of uninoculated plants. Cosmid clone pDS15 restored MDH activity to Rm30049, complemented both the mutant growth and symbiotic phenotypes, and was found to carry six complete (sdhB, mdh, sucCDAB) and two partial (lpdA, sdhA) tricarboxylic acid cycle genes.


2020 ◽  
Vol 245 (12) ◽  
pp. 1066-1072
Author(s):  
Hang Yang ◽  
Linlin Du ◽  
Zhaocai Zhang

Septic shock can be defined as sepsis with persisting hypotension and is required for vasopressors after initial unsuccessful fluid resuscitation. Elevated lactate is a biomarker of tissue perfusion and oxygenation and a useful prognostic tool for resuscitation in septic shock, as it is a byproduct of anaerobic glycolysis due to inadequate oxygen delivery and tissue hypoxia. Early and serial systematic lactate measurement will prompt physician more rapid intervention and lactate normalization, which is associated with better outcome. However, lactate formation during septic shock is neither entirely related to tissue hypoxia, nor reversible by increasing oxygen delivery. Meanwhile, lactate can be oxidized via tricarboxylic acid cycle after being transferred into mitochondria via lactate shuttle, which indicates elevated lactate can be used rather than only accumulation. Glycolysis and elevated lactate can be initiated by hypoxia, but persistent hyperlactatemia may not only represent persistent hypoxia. Some other potential biomarkers have been reviewed in the article including intermediates of tricarboxylic acid cycle, malate-aspartate shuttle, the nicotinamide adenine dinucleotide/reduced nicotinamide adenine dinucleotide (NAD+/NADH) ratio, NAD+, NADH, malate, and malate dehydrogenase from the point of view of energy metabolism. Among them, malate dehydrogenase participates in both malate-aspartate shuttle and tricarboxylic acid cycle, and it can also indirectly reflex the NAD+/NADH ratio. It is reasonable to hypothesize that the combination of lactate and malate dehydrogenase will be more comprehensive to reflex hypoxia in septic shock. Impact statement Elevated lactate has been commonly considered as a biomarker and a useful prognostic tool for resuscitation in septic shock, facilitating physician more rapid intervention and treatment. However, it can be initiated by hypoxia, but persistent hyperlactatemia may not represent persistent hypoxia only. In the article, it is the first time to review potential biomarkers in septic shock from the point of view of energy metabolism including intermediates of TCA cycle, MAS, the NAD+/NADH ratio, NAD+, NADH, malate, and MDH. And the combination of lactate and MDH is also proposed in septic shock for the first time, as MDH in cytoplasm and mitochondria participates in both MAS and TCA cycle for ATP generation. Its feasibility in clinic has been analyzed at the end, although related research is still limited. It is reasonable the combination of lactate and MDH will be more comprehensive to reflex hypoxia in septic shock.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joy Omini ◽  
Izabela Wojciechowska ◽  
Aleksandra Skirycz ◽  
Hideaki Moriyama ◽  
Toshihiro Obata

AbstractMitochondrial malate dehydrogenase (MDH)-citrate synthase (CS) multi-enzyme complex is a part of the Krebs tricarboxylic acid (TCA) cycle ‘metabolon’ which is enzyme machinery catalyzing sequential reactions without diffusion of reaction intermediates into a bulk matrix. This complex is assumed to be a dynamic structure involved in the regulation of the cycle by enhancing metabolic flux. Microscale Thermophoresis analysis of the porcine heart MDH-CS complex revealed that substrates of the MDH and CS reactions, NAD+ and acetyl-CoA, enhance complex association while products of the reactions, NADH and citrate, weaken the affinity of the complex. Oxaloacetate enhanced the interaction only when it was present together with acetyl-CoA. Structural modeling using published CS structures suggested that the binding of these substrates can stabilize the closed format of CS which favors the MDH-CS association. Two other TCA cycle intermediates, ATP, and low pH also enhanced the association of the complex. These results suggest that dynamic formation of the MDH-CS multi-enzyme complex is modulated by metabolic factors responding to respiratory metabolism, and it may function in the feedback regulation of the cycle and adjacent metabolic pathways.


1967 ◽  
Vol 15 (4) ◽  
pp. 202-206
Author(s):  
C. JAMES LOVELACE ◽  
GENE W. MILLER

In vivo effects of fluoride on tricarboxylic acid (TCA) cycle dehydrogenase enzymes of Pelargonium zonale were studied using p-nitro blue tetrazoleum chloride. Plants were exposed to 17 ppb HF, and enzyme activities in treated plants were compared to those in controls. Leaves of control plants were incubated in 5 x 10–3 M sodium fluoride. Injuries observed in fumigation and solution experiments were similar. Leaf tissue subjected to HF or sodium fluoride evidenced less succinic p-nitro blue tetrazoleum reductase activity than did control tissue. Other TCA cycle dehydrogenase enzymes were not observably affected by the fluoride concentrations used in these experiments. Excised leaves cultured in 5 x 10–3 M sodium fluoride exhibited less succinic p-nitro blue tetrazoleum reductase activity after 24 hr than did leaves cultured in 5 x 10–3 M sodium chloride.


2021 ◽  
Vol 10 (1) ◽  
pp. 39
Author(s):  
Xinhua Qi ◽  
Wenlong Yan ◽  
Zhibei Cao ◽  
Mingzhu Ding ◽  
Yingjin Yuan

Polyethylene terephthalate (PET) is a widely used plastic that is polymerized by terephthalic acid (TPA) and ethylene glycol (EG). In recent years, PET biodegradation and bioconversion have become important in solving environmental plastic pollution. More and more PET hydrolases have been discovered and modified, which mainly act on and degrade the ester bond of PET. The monomers, TPA and EG, can be further utilized by microorganisms, entering the tricarboxylic acid cycle (TCA cycle) or being converted into high value chemicals, and finally realizing the biodegradation and bioconversion of PET. Based on synthetic biology and metabolic engineering strategies, this review summarizes the current advances in the modified PET hydrolases, engineered microbial chassis in degrading PET, bioconversion pathways of PET monomers, and artificial microbial consortia in PET biodegradation and bioconversion. Artificial microbial consortium provides novel ideas for the biodegradation and bioconversion of PET or other complex polymers. It is helpful to realize the one-step bioconversion of PET into high value chemicals.


2005 ◽  
Vol 187 (9) ◽  
pp. 2967-2973 ◽  
Author(s):  
Cuong Vuong ◽  
Joshua B. Kidder ◽  
Erik R. Jacobson ◽  
Michael Otto ◽  
Richard A. Proctor ◽  
...  

ABSTRACT Staphylococcal polysaccharide intercellular adhesin (PIA) is important for the development of a mature biofilm. PIA production is increased during growth in a nutrient-replete or iron-limited medium and under conditions of low oxygen availability. Additionally, stress-inducing stimuli such as heat, ethanol, and high concentrations of salt increase the production of PIA. These same environmental conditions are known to repress tricarboxylic acid (TCA) cycle activity, leading us to hypothesize that altering TCA cycle activity would affect PIA production. Culturing Staphylococcus epidermidis with a low concentration of the TCA cycle inhibitor fluorocitrate dramatically increased PIA production without impairing glucose catabolism, the growth rate, or the growth yields. These data lead us to speculate that one mechanism by which staphylococci perceive external environmental change is through alterations in TCA cycle activity leading to changes in the intracellular levels of biosynthetic intermediates, ATP, or the redox status of the cell. These changes in the metabolic status of the bacteria result in the attenuation or augmentation of PIA production.


1997 ◽  
Vol 272 (2) ◽  
pp. E239-E244 ◽  
Author(s):  
M. J. Gibala ◽  
M. A. Tarnopolsky ◽  
T. E. Graham

Previous studies have used the muscle concentration of citrate + malate + fumarate to estimate tricarboxylic acid (TCA) cycle pool size in humans [e.g., Am. J. Physiol. 259 (Cell Physiol. 28): C834-C841, 1990]. Our purpose was to quantify changes in individual TCA cycle intermediates (TCAI) and total pool size by measuring the concentrations of the eight TCAI in human muscle. Eight males cycled to exhaustion (Exh) at approximately 70% of their maximal oxygen uptake, and biopsies were obtained from the vastus lateralis at rest and during exercise. Succinyl-CoA was not consistently detectable, but the sum of the other seven TCAI was 1.23 +/- 0.04 mmol/kg dry wt at rest, 4.80 +/- 0.25 and 4.87 +/- 0.30 mmol/kg after 5 and 15 min of exercise, respectively, and 3.08 +/- 0.15 mmol/kg at Exh. Pool size during exercise was approximately 50% higher than that seen in rodent muscle after intense electrical stimulation (Eur. J. Biochem. 110: 371-377, 1980). Relative changes in individual TCAI were not uniform, and no one intermediate was "representative" of the changes in total pool size. We conclude that changes in specific intermediates or total pool size cannot be used as indicators of cycle flux and that the apparent species differences in total pool size may reflect differences in fiber type composition, recruitment pattern, or relative intensity of contraction.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Liying Ruan ◽  
Lu Li ◽  
Dian Zou ◽  
Cong Jiang ◽  
Zhiyou Wen ◽  
...  

Abstract Background S-Adenosylmethionine (SAM) is a critical cofactor involved in many biochemical reactions. However, the low fermentation titer of SAM in methionine-free medium hampers commercial-scale production. The SAM synthesis pathway is specially related to the tricarboxylic acid (TCA) cycle in Bacillus amyloliquefaciens. Therefore, the SAM synthesis pathway was engineered and coupled with the TCA cycle in B. amyloliquefaciens to improve SAM production in methionine-free medium. Results Four genes were found to significantly affect SAM production, including SAM2 from Saccharomyces cerevisiae, metA and metB from Escherichia coli, and native mccA. These four genes were combined to engineer the SAM pathway, resulting in a 1.42-fold increase in SAM titer using recombinant strain HSAM1. The engineered SAM pathway was subsequently coupled with the TCA cycle through deletion of succinyl-CoA synthetase gene sucC, and the resulted HSAM2 mutant produced a maximum SAM titer of 107.47 mg/L, representing a 0.59-fold increase over HSAM1. Expression of SAM2 in this strain via a recombinant plasmid resulted in strain HSAM3 that produced 648.99 mg/L SAM following semi-continuous flask batch fermentation, a much higher yield than previously reported for methionine-free medium. Conclusions This study reports an efficient strategy for improving SAM production that can also be applied for generation of SAM cofactors supporting group transfer reactions, which could benefit metabolic engineering, chemical biology and synthetic biology.


2009 ◽  
Vol 75 (15) ◽  
pp. 5001-5008 ◽  
Author(s):  
Xueyang Feng ◽  
Housna Mouttaki ◽  
Lu Lin ◽  
Rick Huang ◽  
Bing Wu ◽  
...  

ABSTRACT Thermoanaerobacter sp. strain X514 has great potential in biotechnology due to its capacity to ferment a range of C5 and C6 sugars to ethanol and other metabolites under thermophilic conditions. This study investigated the central metabolism of strain X514 via 13C-labeled tracer experiments using either glucose or pyruvate as both carbon and energy sources. X514 grew on minimal medium and thus contains complete biosynthesis pathways for all macromolecule building blocks. Based on genome annotation and isotopic analysis of amino acids, three observations can be obtained about the central metabolic pathways in X514. First, the oxidative pentose phosphate pathway in X514 is not functional, and the tricarboxylic acid cycle is incomplete under fermentative growth conditions. Second, X514 contains (Re)-type citrate synthase activity, although no gene homologous to the recently characterized (Re)-type citrate synthase of Clostridium kluyveri was found. Third, the isoleucine in X514 is derived from acetyl coenzyme A and pyruvate via the citramalate pathway rather than being synthesized from threonine via threonine ammonia-lyase. The functionality of the citramalate synthase gene (cimA [Teth514_1204]) has been confirmed by enzymatic activity assays, while the presence of intracellular citramalate has been detected by mass spectrometry. This study demonstrates the merits of combining 13C-assisted metabolite analysis, enzyme assays, and metabolite detection not only to examine genome sequence annotations but also to discover novel enzyme activities.


Sign in / Sign up

Export Citation Format

Share Document