scholarly journals Novel Klebsiella pneumoniae K23-Specific Bacteriophages From Different Families: Similarity of Depolymerases and Their Therapeutic Potential

2021 ◽  
Vol 12 ◽  
Author(s):  
Roman B. Gorodnichev ◽  
Nikolay V. Volozhantsev ◽  
Valentina M. Krasilnikova ◽  
Ivan N. Bodoev ◽  
Maria A. Kornienko ◽  
...  

Antibiotic resistance is a major public health concern in many countries worldwide. The rapid spread of multidrug-resistant (MDR) bacteria is the main driving force for the development of novel non-antibiotic antimicrobials as a therapeutic alternative. Here, we isolated and characterized three virulent bacteriophages that specifically infect and lyse MDR Klebsiella pneumoniae with K23 capsule type. The phages belonged to the Autographiviridae (vB_KpnP_Dlv622) and Myoviridae (vB_KpnM_Seu621, KpS8) families and contained highly similar receptor-binding proteins (RBPs) with polysaccharide depolymerase enzymatic activity. Based on phylogenetic analysis, a similar pattern was also noted for five other groups of depolymerases, specific against capsule types K1, K30/K69, K57, K63, and KN2. The resulting recombinant depolymerases Dep622 (phage vB_KpnP_Dlv622) and DepS8 (phage KpS8) demonstrated narrow specificity against K. pneumoniae with capsule type K23 and were able to protect Galleria mellonella larvae in a model infection with a K. pneumoniae multidrug-resistant strain. These findings expand our knowledge of the diversity of phage depolymerases and provide further evidence that bacteriophages and phage polysaccharide depolymerases represent a promising tool for antimicrobial therapy.

2020 ◽  
Vol 2 (12) ◽  
Author(s):  
Geoffrey Foster ◽  
Manal AbuOun ◽  
Romain Pizzi ◽  
Bryn Tennant ◽  
Margaret McCall ◽  
...  

The ST307 multidrug-resistant CTX-M-15-producing Klebsiella pneumoniae is an emerging pathogen, which has become disseminated worldwide in humans but is rarely reported from other reservoirs. We report the first isolation of K. pneumoniae from an animal in Europe and also from a reptile, a captive tortoise, whose death it probably caused. Detection of this clone from an animal adds to evidence of niche expansion in non-human environments, where it may amplify, recycle and become of greater public health concern.


Antibiotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 56
Author(s):  
Dalila Mil-Homens ◽  
Maria Martins ◽  
José Barbosa ◽  
Gabriel Serafim ◽  
Maria J. Sarmento ◽  
...  

Klebsiella pneumoniae, one of the most common pathogens found in hospital-acquired infections, is often resistant to multiple antibiotics. In fact, multidrug-resistant (MDR) K. pneumoniae producing KPC or OXA-48-like carbapenemases are recognized as a serious global health threat. In this sense, we evaluated the virulence of K. pneumoniae KPC(+) or OXA-48(+) aiming at potential antimicrobial therapeutics. K. pneumoniae carbapenemase (KPC) and the expanded-spectrum oxacillinase OXA-48 isolates were obtained from patients treated in medical care units in Lisbon, Portugal. The virulence potential of the K. pneumonia clinical isolates was tested using the Galleria mellonella model. For that, G. mellonella larvae were inoculated using patients KPC(+) and OXA-48(+) isolates. Using this in vivo model, the KPC(+) K. pneumoniae isolates showed to be, on average, more virulent than OXA-48(+). Virulence was found attenuated when a low bacterial inoculum (one magnitude lower) was tested. In addition, we also report the use of a synthetic polycationic oligomer (L-OEI-h) as a potential antimicrobial agent to fight infectious diseases caused by MDR bacteria. L-OEI-h has a broad-spectrum antibacterial activity and exerts a significantly bactericidal activity within the first 5-30 min treatment, causing lysis of the cytoplasmic membrane. Importantly, the polycationic oligomer showed low toxicity against in vitro models and no visible cytotoxicity (measured by survival and health index) was noted on the in vivo model (G. mellonella), thus L-OEI-h is foreseen as a promising polymer therapeutic for the treatment of MDR K. pneumoniae infections.


2012 ◽  
Vol 56 (11) ◽  
pp. 5961-5970 ◽  
Author(s):  
Luísa C. S. Antunes ◽  
Francesco Imperi ◽  
Fabrizia Minandri ◽  
Paolo Visca

ABSTRACTMultidrug-resistantAcinetobacter baumanniiposes a tremendous challenge to traditional antibiotic therapy. Due to the crucial role of iron in bacterial physiology and pathogenicity, we investigated iron metabolism as a possible target for anti-A. baumanniichemotherapy using gallium as an iron mimetic. Due to chemical similarity, gallium competes with iron for binding to several redox enzymes, thereby interfering with a number of essential biological reactions. We found that Ga(NO3)3, the active component of an FDA-approved drug (Ganite), inhibits the growth of a collection of 58A. baumanniistrains in both chemically defined medium and human serum, at concentrations ranging from 2 to 80 μM and from 4 to 64 μM, respectively. Ga(NO3)3delayed the entry ofA. baumanniiinto the exponential phase and drastically reduced bacterial growth rates. Ga(NO3)3activity was strongly dependent on iron availability in the culture medium, though the mechanism of growth inhibition was independent of dysregulation of gene expression controlled by the ferric uptake regulator Fur. Ga(NO3)3also protectedGalleria mellonellalarvae from lethalA. baumanniiinfection, with survival rates of ≥75%. At therapeutic concentrations for humans (28 μM plasma levels), Ga(NO3)3inhibited the growth in human serum of 76% of the multidrug-resistantA. baumanniiisolates tested by ≥90%, raising expectations on the therapeutic potential of gallium for the treatment ofA. baumanniibloodstream infections. Ga(NO3)3also showed strong synergism with colistin, suggesting that a colistin-gallium combination holds promise as a last-resort therapy for infections caused by pan-resistantA. baumannii.


2020 ◽  
Vol 21 (9) ◽  
pp. 3160 ◽  
Author(s):  
Pilar Domingo-Calap ◽  
Beatriz Beamud ◽  
Lucas Mora-Quilis ◽  
Fernando González-Candelas ◽  
Rafael Sanjuán

The emergence of multidrug-resistant bacteria is a major global health concern. The search for new therapies has brought bacteriophages into the spotlight, and new phages are being described as possible therapeutic agents. Among the bacteria that are most extensively resistant to current antibiotics is Klebsiella pneumoniae, whose hypervariable extracellular capsule makes treatment particularly difficult. Here, we describe two new K. pneumoniae phages, πVLC5 and πVLC6, isolated from environmental samples. These phages belong to the genus Drulisvirus within the family Podoviridae. Both phages encode a similar tail spike protein with putative depolymerase activity, which is shared among other related phages and probably determines their ability to specifically infect K. pneumoniae capsular types K22 and K37. In addition, we found that phage πVLC6 also infects capsular type K13 and is capable of striping the capsules of K. pneumoniae KL2 and KL3, although the phage was not infectious in these two strains. Genome sequence analysis suggested that the extended tropism of phage πVLC6 is conferred by a second, divergent depolymerase. Phage πVLC5 encodes yet another putative depolymerase, but we found no activity of this phage against capsular types other than K22 and K37, after testing a panel of 77 reference strains. Overall, our results confirm that most phages productively infected one or few Klebsiella capsular types. This constitutes an important challenge for clinical applications.


Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 732
Author(s):  
Nikolay V. Volozhantsev ◽  
Anna M. Shpirt ◽  
Alexander I. Borzilov ◽  
Ekaterina V. Komisarova ◽  
Valentina M. Krasilnikova ◽  
...  

Bacteriophages and phage enzymes are considered as possible alternatives to antibiotics in the treatment of infections caused by antibiotic-resistant bacteria. Due to the ability to cleave the capsular polysaccharides (CPS), one of the main virulence factors of Klebsiella pneumoniae, phage depolymerases, has potential in the treatment of K. pneumoniae infections. Here, we characterized in vivo two novel phage-encoded polysaccharide depolymerases as therapeutics against clinical isolates of K. pneumoniae. The depolymerases Dep_kpv79 and Dep_kpv767 encoded by Klebsiella phages KpV79 (Myoviridae; Jedunavirus) and KpV767 (Autographiviridae, Studiervirinae, Przondovirus), respectively, were identified as specific β-galactosidases that cleave the K. pneumoniae K57 type CPS by the hydrolytic mechanism. They were found to be highly effective at combating sepsis and hip infection caused by K. pneumoniae in lethal mouse models. Here, 80–100% of animals were protected against death by a single dose (e.g., 50 μg/mouse) of the enzyme injected 0.5 h after infection by K. pneumoniae strains of the K57 capsular type. The therapeutic effect of the depolymerases is because they strip the capsule and expose the underlying bacterium to the immune attack such as complement-mediated killing. These data provide one more confirmation that phage polysaccharide depolymerases represent a promising tool for antimicrobial therapy.


2020 ◽  
Vol 16 ◽  
pp. 117693432093626
Author(s):  
Iván Darío Ocampo-Ibáñez ◽  
Yamil Liscano ◽  
Sandra Patricia Rivera-Sánchez ◽  
José Oñate-Garzón ◽  
Ashley Dayan Lugo-Guevara ◽  
...  

Infections caused by multidrug-resistant (MDR) Pseudomonas aeruginosa and Klebsiella pneumoniae are a serious worldwide public health concern due to the ineffectiveness of empirical antibiotic therapy. Therefore, research and the development of new antibiotic alternatives are urgently needed to control these bacteria. The use of cationic antimicrobial peptides (CAMPs) is a promising candidate alternative therapeutic strategy to antibiotics because they exhibit antibacterial activity against both antibiotic susceptible and MDR strains. In this study, we aimed to investigate the in vitro antibacterial effect of a short synthetic CAMP derived from the ΔM2 analog of Cec D-like (CAMP-CecD) against clinical isolates of K pneumoniae (n = 30) and P aeruginosa (n = 30), as well as its hemolytic activity. Minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) of CAMP-CecD against wild-type and MDR strains were determined by the broth microdilution test. In addition, an in silico molecular dynamic simulation was performed to predict the interaction between CAMP-CecD and membrane models of K pneumoniae and P aeruginosa. The results revealed a bactericidal effect of CAMP-CecD against both wild-type and resistant strains, but MDR P aeruginosa showed higher susceptibility to this peptide with MIC values between 32 and >256 μg/mL. CAMP-CecD showed higher stability in the P aeruginosa membrane model compared with the K pneumoniae model due to the greater number of noncovalent interactions with phospholipid 1-Palmitoyl-2-oleyl-sn-glycero-3-(phospho-rac-(1-glycerol)) (POPG). This may be related to the boosted effectiveness of the peptide against P aeruginosa clinical isolates. Given the antibacterial activity of CAMP-CecD against wild-type and MDR clinical isolates of P aeruginosa and K pneumoniae and its nonhemolytic effects on human erythrocytes, CAMP-CecD may be a promising alternative to conventional antibiotics.


2019 ◽  
Vol 5 (Supplement_1) ◽  
Author(s):  
Eleonora Cella ◽  
Davide Leoni ◽  
Walter Mirandola ◽  
Carla Fontana ◽  
Loredana Sarmati ◽  
...  

Abstract Bloodstream infection (BSI) caused by carbapenemase-producing Enterobacteriaceae (CPE) is a major public health concern, particularly in the hospital setting. The rapid detection of resistance patterns is of paramount importance for establishing the proper antibiotic regime. In addition, in countries where CPE are endemic, it is also important to evaluate genetic relationship among the isolates in order to trace pathogen circulation and to improve the infection control programs. This study is an application of a rapid blood culture (BC) workflow consisting of fast reporting of Gram stain results, rapid pathogen identification (using MALDI TOF technology), and a molecular assay for the detection of the major genes conferring resistance, all of them performed directly from positive BCs. The application of phylogenetic and phylodynamic analyses to bacterial whole-genome sequencing (WGS) data have become essential in the epidemiological surveillance of multidrug-resistant nosocomial pathogens. We analyzed 40 strains of Klebsiella pneumoniae subsp. pneumoniae (KP) carrying blaKPC (KP-KPC), randomly selected among 147 CPE identified from BCs collected from consecutive patients from 2013 to 2016. The number of BSIs-related CPE were 23, 31, 43, and 50 in 2013, 2014, 2015, and 2016, respectively. Among 147 CPE isolates, 143 were KP and four were Escherichia coli (EC). The gene blaKPC was detected in 117 strains of KP and in four strains of EC. Other carbapenemase genes, such as blaVIM and blaOXA-48, were detected in four and nine different isolates of KP, respectively. Moreover, 13 KP strains carried two resistance genes: twelve vehicled blaKPC plus blaVIM and one blaKPC plus blaOXA-48. Phylogenetic analysis of bacterial WGS data was used to investigate the evolution and spatial dispersion of KP in support of hospital infection control. The maximum likelihood tree showed two main clades statistically supported, with statistical support for several subclusters within as well. The minimum spanning tree showed mixing between sequences from different years and wards with only few specific groups. Bayesian analyses are ongoing, as the aid of Bayesian genomic epidemiology in combination with active microbial surveillance is highly informative regarding the development of effective infection prevention in healthcare settings or constant strain reintroduction.


2011 ◽  
Vol 56 (1) ◽  
pp. 555-558 ◽  
Author(s):  
Sandra K. Urich ◽  
Linda Chalcraft ◽  
Martin E. Schriefer ◽  
Brook M. Yockey ◽  
Jeannine M. Petersen

ABSTRACTYersinia pestisis the causative agent of plague, a fulminant disease that is often fatal without antimicrobial treatment. Plasmid (IncA/C)-mediated multidrug resistance inY. pestiswas reported in 1995 in Madagascar and has generated considerable public health concern, most recently because of the identification of IncA/C multidrug-resistant plasmids in other zoonotic pathogens. Here, we demonstrate no resistance in 392Y. pestisisolates from 17 countries to eight antimicrobials used for treatment or prophylaxis of plague.


Sign in / Sign up

Export Citation Format

Share Document