scholarly journals A Patched-Like Protein PsPTL Is Not Essential for the Growth and Response to Various Stresses in Phytophthora sojae

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhaolin Xue ◽  
Weizhen Wang ◽  
Jinghuan Shen ◽  
Jinhui Zhang ◽  
Xitao Zhang ◽  
...  

Patched (Ptc) and Patched-related (Ptr) proteins containing sterol-sensing domains (SSD) and Patched domains are highly conserved in eukaryotes for lipid transport and metabolism. Four proteins containing predicted SSD and Patched domains were simultaneously found by searching the Phytophthora sojae genome database, and one of them was identified as a Patched-like (PTL) protein. Here, we investigated the biological function of PsPTL. The expression level of PsPTL was higher during mycelial and sporulation stages, compared to zoospore (ZO), cyst, and germinated-cyst stages, without significant change during infection. However, deletion of PsPTL using CRISPR/Cas9 had no significant effect on the growth, development, or virulence of P. sojae. Further investigations showed that PsPTL is not essential for P. sojae to cope with external stresses such as temperature, pH, oxidative and osmotic pressure. In addition, this gene did not appear to play an essential role in P. sojae’s response to exogenous sterols. The transcript levels of the other three proteins containing predicted SSD and Patched domains were also not significantly upregulated in PsPTL deletion transformants. Our studies demonstrated that PsPTL is not an essential protein for P. sojae under the tested conditions, and more in-depth research is required for revealing the potential functions of PsPTL under special conditions or in other signaling pathways.

The vapour pressure theory regards osmotic pressure as the pressure required to produce equilibrium between the pure solvent and the solution. Pressure applied to a solution increases its internal vapour pressure. If the compressed solution be on one aide of a semi-permeable partition and the pure solvent on the other, there is osmotic equilibrium when the com-pression of the solution brings its vapour pressure to equality with that of the solvent. So long ago as 1894 Ramsay* found that with a partition of palladium, permeable to hydrogen but not to nitrogen, the hydrogen pressures on each side tended to equality, notwithstanding the presence of nitrogen under pressure on one side, which it might have been supposed would have resisted tin- transpiration of the hydrogen. The bearing of this experiment on the problem of osmotic pressure was recognised by van’t Hoff, who observes that "it is very instructive as regards the means by which osmotic pressure is produced." But it was not till 1908 that the vapour pressure theory of osmotic pressure was developed on a finu foundation by Calendar. He demonstrated, by the method of the "vapour sieve" piston, the proposition that “any two solutions in equilibrium through any kind of membrane or capillary surface must have the same vapour pressures in respect of each of their constituents which is capable of diffusing through their surface of separation"—a generalisation of great importance for the theory of solutions. Findlay, in his admirable monograph, gives a very complete account of the contending theories of osmotic pressure, a review of which leaves no doubt that at the present moment the vapour pressure theory stands without a serious rival Some confusion of ideas still arises from the want of adherence to a strict definition of osmotic pressure to which numerical data from experimental measurements should he reduced. Tire following definitions appear to be tire outcome of tire vapour pressure theory :— Definition I.—The vapour pressure of a solution is the pressure of the vapour with which it is in equilibrium when under pressure of its own vapour only.


1939 ◽  
Vol 69 (6) ◽  
pp. 819-831 ◽  
Author(s):  
Jaques Bourdillon

In serum of patients with nephrosis both albumin and globulin showed by osmotic pressure nearly double the molecular weights of normal albumin and globulin. In the urines of such patients, on the other hand, both proteins showed molecular weights lower even than in normal serum. The colloidal osmotic pressures were measured by the author's method at such dilutions that the van't Hoff law relating pressures to molecular concentrations could be directly applied. For the albumin and globulin of normal serum the molecular weights found were 72,000 and 164,000 respectively, in agreement with the weights obtained by other methods.


2008 ◽  
Vol 19 (6) ◽  
pp. 2661-2672 ◽  
Author(s):  
Soomin Shim ◽  
Samuel A. Merrill ◽  
Phyllis I. Hanson

The AAA+ ATPase VPS4 plays an essential role in multivesicular body biogenesis and is thought to act by disassembling ESCRT-III complexes. VPS4 oligomerization and ATPase activity are promoted by binding to LIP5. LIP5 also binds to the ESCRT-III like protein CHMP5/hVps60, but how this affects its function remains unclear. Here we confirm that LIP5 binds tightly to CHMP5, but also find that it binds well to additional ESCRT-III proteins including CHMP1B, CHMP2A/hVps2–1, and CHMP3/hVps24 but not CHMP4A/hSnf7–1 or CHMP6/hVps20. LIP5 binds to a different region within CHMP5 than within the other ESCRT-III proteins. In CHMP1B and CHMP2A, its binding site encompasses sequences at the proteins' extreme C-termini that overlap with “MIT interacting motifs” (MIMs) known to bind to VPS4. We find unexpected evidence of a second conserved binding site for VPS4 in CHMP2A and CHMP1B, suggesting that LIP5 and VPS4 may bind simultaneously to these proteins despite the overlap in their primary binding sites. Finally, LIP5 binds preferentially to soluble CHMP5 but instead to polymerized CHMP2A, suggesting that the newly defined interactions between LIP5 and ESCRT-III proteins may be regulated by ESCRT-III conformation. These studies point to a role for direct binding between LIP5 and ESCRT-III proteins that is likely to complement LIP5's previously described ability to regulate VPS4 activity.


2006 ◽  
Vol 188 (3) ◽  
pp. 1205-1210 ◽  
Author(s):  
A. E. Sikora ◽  
R. Zielke ◽  
K. Datta ◽  
J. R. Maddock

ABSTRACT It was previously reported that unlike the other obg/cgtA GTPases, the Vibrio harveyi cgtAV is not essential. Here we show that cgtAV was not disrupted in these studies and is, in fact, essential for viability. Depletion of CgtAV did not result in cell elongation. CgtAV is associated with the large ribosomal particle. In light of our results, we predict that the V. harveyi CgtAV protein plays a similar essential role to that seen for Obg/CgtA proteins in other bacteria.


Author(s):  
He L ◽  
◽  
Jia X ◽  
Yu L ◽  
◽  
...  

Type 1 Diabetes (T1D) is one of the most common chronic diseases in childhood, which is caused by destruction of insulinproducing pancreatic beta cells. Its incidence increases 3-5% annually and doubles every 20 years [1,2]. On one hand, acute and chronic complications of T1D seriously affect the quality of life and even life span of patients. On the other hand, prognosis can greatly be improved when the disease prediction and closely monitoring are applied, leading to earlier diagnosis and treatment [3]. Islet Autoantibodies (IAbs), as most reliable biomarkers at present for islet autoimmunity, precede clinical T1D by years and play an essential role in prediction and clinical diagnosis of T1D [4,5].


mSphere ◽  
2020 ◽  
Vol 5 (6) ◽  
Author(s):  
Sang-Cheol Jun ◽  
Yong-Ho Choi ◽  
Min-Woo Lee ◽  
Jae-Hyuk Yu ◽  
Kwang-Soo Shin

ABSTRACT The APSES transcription factor (TF) in Aspergillus species is known to govern diverse cellular processes, including growth, development, and secondary metabolism. Here, we investigated functions of the rgdA gene (Afu3g13920) encoding a putative APSES TF in the opportunistic human-pathogenic fungus Aspergillus fumigatus. The rgdA deletion resulted in significantly decreased hyphal growth and asexual sporulation. Consistently, transcript levels of the key asexual developmental regulators abaA, brlA, and wetA were decreased in the ΔrgdA mutant compared to those in the wild type (WT). Moreover, ΔrgdA resulted in reduced spore germination rates and elevated transcript levels of genes associated with conidium dormancy. The conidial cell wall hydrophobicity and architecture were changed, and levels of the RodA protein were decreased in the ΔrgdA mutant. Comparative transcriptomic analyses revealed that the ΔrgdA mutant showed higher mRNA levels of gliotoxin (GT)-biosynthetic genes and GT production. While the ΔrgdA mutant exhibited elevated production of GT, ΔrgdA strains showed reduced virulence in the mouse model. In addition, mRNA levels of genes associated with the cyclic AMP (cAMP)-protein kinase A (PKA) signaling pathway and the SakA mitogen-activated protein (MAP) kinase pathway were increased in the ΔrgdA mutant. In summary, RgdA plays multiple roles in governing growth, development, GT production, and virulence which may involve attenuation of PKA and SakA signaling. IMPORTANCE Immunocompromised patients are susceptible to infections with the opportunistic human-pathogenic fungus Aspergillus fumigatus. This fungus causes systemic infections such as invasive aspergillosis (IA), which is one of the most life-threatening fungal diseases. To control this serious disease, it is critical to identify new antifungal drug targets. In fungi, the transcriptional regulatory proteins of the APSES family play crucial roles in controlling various biological processes, including mating, asexual sporulation and dimorphic growth, and virulence traits. This study found that a putative APSES transcription factor, RgdA, regulates normal growth, asexual development, conidium germination, spore wall architecture and hydrophobicity, toxin production, and virulence in A. fumigatus. Better understanding the molecular mechanisms of RgdA in human-pathogenic fungi may reveal a novel antifungal target for future drug development.


Author(s):  
Vrushali Dhage

Works of art can be read at various levels: from being objects of simple retinal pleasure to the other extreme of being significant critical statements of their time. This chapter aims to strike a cerebral dialogue through the works of art. The current study shall consider the latter function of art and analyze the methods in which contemporary Indian artists have made attempts to provide a critique of the early initiatives towards developing Delhi and Mumbai as ‘smart cities'. The review of works from India concludes the essential role of infrastructural projects and envisioned spaces built in the era of economic liberalization. The study aims at drawing a methodological approach, with an art historical perspective, with the artists analysing and translating the urban experiential phenomenon, into artworks.


Author(s):  
Philip Stratton-Lake

In Christian theology ‘hope’ has a central role as one of the three theological virtues. As theology has gradually become separated from moral theory, the inclusion of ‘hope’ within a theory of ethics has become rare. Hope can be either intentional or dispositional. The former is a specific hope for something, whereas the latter is a state of character. Kant gave a central place to intentional hopes in his moral theory with his doctrine of the postulates. Hope also played an essential role in the moral and political writings of Ernst Bloch and Gabriel Marcel. Bloch regarded hope as concerned with a longing for utopia, whereas Marcel regarded hope as a disposition to rise above situations which tempt one to despair. In each of these writers the Christian connection between hope, on the one hand, and faith and love, on the other, remained, although Kant and Bloch did not oppose these categories to reason, but sought to ‘subsume’ them under it.


2019 ◽  
pp. 407-416
Author(s):  
Edward A. Ross ◽  
Uyanga Batnyam ◽  
Abdo M. Asmar

Renal and cardiac crosstalk plays an essential role in maintaining physiological homeostasis. Both organ diseases are prevalent and share common risk factors. Impairment in one organ has the potential to affect the other. This interaction is referred to as cardiorenal syndrome, and it is driven by complex neurohumoral and vascular processes. Cardiorenal syndrome refers to a state of either acute or chronic impairment of both renal and cardiac functions. Despite progress in therapeutic interventions, treatment of cardiorenal syndrome remains challenging. In this chapter, we review the current understanding of the pathophysiological mechanisms of cardiorenal syndrome, as well as its management options.


1959 ◽  
Vol 39 (3) ◽  
pp. 384-394 ◽  
Author(s):  
D. H. Heinrichs

Two laboratory experiments were conducted to evaluate the reliability of amount of germination in solutions of varying osmotic pressure, as a means of separating alfalfa varieties into winter-hardiness classes. In one test 23 varieties or strains were studied, and in the other 36. It was found that significant differences exist between certain alfalfa varieties in their ability to germinate in sucrose or sodium chloride solutions of 3, 6, and 9 atmospheres. There is a general tendency for non-hardy varieties to germinate more rapidly and more completely than hardy ones but there are many exceptions to this trend. Germination in solutions of 6 atmospheres osmotic pressure at 5 days gave the best separation of varieties on the basis of their ability to germinate. Germination was generally better in solutions of sucrose at 6 atmospheres osmotic pressure than in solutions of sodium chloride of the same osmotic pressure but several varieties germinated equally well in either solution. The results indicate that germinating alfalfa in sugar or salt solutions is not a reliable method for differentiating alfalfa varieties into winter hardiness classes.


Sign in / Sign up

Export Citation Format

Share Document